Skip to main content

Advanced Controllers for Level Processes: Hardware-in-the-Loop Technique

  • Conference paper
  • First Online:
Perspectives and Trends in Education and Technology

Abstract

One of the most important variables in the automation process is the liquid level; therefore, this work presents the design of advanced control algorithms such as model-based predictive control and fuzzy for a level process with multiple inputs and multiple outputs. These will be implemented under the hardware-in-the-loop technique. Where each controller is distributed in embedded devices (Raspberry Pi 4), in turn the mathematical model that presents the dynamics of the process is located in a main computer, in which a virtual environment is developed to contribute with a more realistic representation of the process. This is done in order to evaluate the behavior of the process, as well as to assess the performance of each control algorithm implemented. Finally, the experimental results obtained are presented, based on previously established parameters, which allow the identification of the controller with the best efficiency for process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stankovski, S., Ostojić, G., Baranovski, I., Babić, M., Stanojević, M.: The impact of edge computing on industrial`automation. In: 19th International Symposium INFOTEH- JAHORINA (INFOTEH), pp. 1–4 (2020)

    Google Scholar 

  2. Ahmed, K., Blech, O., Gregory, A., Schmidt, W.: Software defined networks in industrial automation. J. Sens. Actuator Netw., pp. 1–3 (2018)

    Google Scholar 

  3. Bradon, E.: Geographies of the labour process: automation and the spatiality of mining. Work, Employ. Soc. 30(6), 932–948 (2016)

    Google Scholar 

  4. Bahrin, M., Othman, M., Azli, N., Talib, M.: Industry 4.0: a review on industrial automation and robotic. Jurnal Teknologi, pp. 137–139 (2016)

    Google Scholar 

  5. Zambrano, J.I. et al.: Multi-user virtual system for training of the production and bottling process of soft drinks. In: 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). IEEE (2020)

    Google Scholar 

  6. Teneda F.I., Villacís J.I., Espinosa E.G., Andaluz V.H.: Conversational agent for industrial processes through virtual environments. Advances in Intelligent Systems and Computing, vol 1368. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72654-6_21

  7. Ortiz, J.S., et al.: Virtual training for industrial automation processes through pneumatic controls. In: Augmented Reality, Virtual Reality, and Computer Graphics, pp. 516–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_37

  8. Porras, A.P., Solis, C.R., Andaluz, V.H., Sánchez, J.S., Naranjo, C.A.: Virtual training system for an industrial pasteurization process. In: Augmented Reality, Virtual Reality, and Computer Graphics, pp. 430–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25999-0_35

  9. Soto, G.: Control de procesos industriales con minimización del consumo energetico. Escuela de Ingeniería Eléctrica y Mecánica., Medellín-Colombia (2019)

    Google Scholar 

  10. Rodrígueza, T.: Modelado y control de turbinas eólicas marinas flotantes. Rev. Iberoamericana de Automática e Informática ind. 16(4), 381–390 (2018)

    Google Scholar 

  11. Camacho, O., Martinez, J., Patiño, K., Ulloa, F., Aro, K., Mejía, C.: Comparación de diferentes estrategias de control para sistemas con retardo. Rev. Cienc. Ing. 40(3), 303–310 (2019)

    Google Scholar 

  12. Prato, R., Méndez, M., Sulbaran, R.: Efecto de las técnicas de desacoplamiento en sistemas multivariables. Ingeniería y Desarrollo 35(2), 471–490 (2017)

    Google Scholar 

  13. Alexandre, G., Inácio, J., Fernandes, T., De Sousa, F.: Comparativo entre controladores PID, PID Fuzzy e Preditivo avaliados a una planta industrial de nível e temperatura. Congresso Técnico Científico da Engenharia e da Agronomia CONTECC’ , nº Paraná, Brasil (2016)

    Google Scholar 

  14. Bosquea, G., Campob, L., Echanobeb, J.: Fuzzy systems, neural networks and neuro-fuzzy systems: a vision on their hardware implementation and platforms over two decades. Eng. Appl. Artif. Intell. 32, 283–331 (2015)

    Google Scholar 

  15. Sarkar, A., Mandal, J.: Secured wireless communication using fuzzy logic based high speed public-key cryptography (FLHSPKC). (IJACSA) Int. J. Adv. Comput. Sci. Appl. 3(10), 137

    Google Scholar 

  16. Chabni, F., Taleb, R., Benbouali, A., Bouthiba, M.: The application of fuzzy control in water tank level using Arduino. Int. J. Adv. Comput. Sci. Appl. 7(4), 261–265 (2016)

    Google Scholar 

  17. Zamani, M., Rahmani, Z., Rezaie, B.: A novel framework of model predictive control for controlling a class of nonlinear system in the presence of uncertainty. J. Vib. Control (2020)

    Google Scholar 

  18. Rymarczyk, T., Kłosowski, G.: Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc – Maintenance and Reliability 21(2), 261–263 (2019)

    Google Scholar 

  19. Coello, L., Casas, L., Laura, Pérez, O., Caballero, Y.: Redes neuronales artificiales en la producción de tecnología. Rev. Acad. Virtualidad 8(1), 15 (2016)

    Google Scholar 

  20. Ortiz, J.S., Palacios-Navarro, G., Andaluz, V.H., Guevara, B.S.: Virtual reality-based framework to simulate control algorithms for robotic assistance and rehabilitation tasks through a standing wheelchair. Sensors 21(15), 5083 (2021). https://doi.org/10.3390/s21155083

    Article  Google Scholar 

  21. Andaluz, G.M., et al.: Modeling dynamic of the human-wheelchair system applied to NMPC. In: Lecture Notes in Computer Science, vol 9835. Springer, Cham. (2016). https://doi.org/10.1007/978-3-319-43518-3_18

Download references

Acknowledgements

The authors would like to thank the Universidad de las Fuerzas Armadas ESPE; Universidad Tecnológica Indoamérica; SISAu Research Group, and the Research Group ARSI, for the support for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quispe, M.A., Molina, M.C., Castillo, F., Andaluz, V.H. (2022). Advanced Controllers for Level Processes: Hardware-in-the-Loop Technique. In: Mesquita, A., Abreu, A., Carvalho, J.V. (eds) Perspectives and Trends in Education and Technology. Smart Innovation, Systems and Technologies, vol 256. Springer, Singapore. https://doi.org/10.1007/978-981-16-5063-5_59

Download citation

Publish with us

Policies and ethics