Skip to main content

Modeling and Control of Omnidirectional Robots with Displaced Center of Mass

  • Conference paper
  • First Online:
Perspectives and Trends in Education and Technology

Abstract

This work focuses on the design and implementation of a control algorithm for tracking trajectories of an omnidirectional robotic platform. The design is based on a dynamic model that considers the center of mass displaced; this model is obtained by formulating Euler–Lagrange considering the kinetic energy that acts on the robotic system. This type of model is used for when robots carry loads and these are not located in the center of the robot directly affecting the dynamics of the robotic platform; validation of the obtained model is carried out experimentally with an identification algorithm using the robotic platform built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andaluz, V.H., Sásig, E.R., Chicaiza, W.D., Velasco, P.M.: Linear Algebra Applied to Kinematic Control of Mobile Manipulators (pp. 297–306). Springer Nature Singapore Pte Ltd. (2018)

    Google Scholar 

  2. Belanche, D., Casaló, L.V., Flavián, C., Schepers, J.: Service robot implementation: a theoretical framework and research agenda. The Serv. Ind. J., pp. 203–225 (2019)

    Google Scholar 

  3. Moradi, H., Kawamura, K., Prassler, E., Muscato, G., Fiorini, P., Sato, T., Rusu, R.: Service Robotics (The Rise and Bloom of Service Robots). IEEE Robot. Autom. Mag., pp. 22–24 (2013)

    Google Scholar 

  4. Guo, P., Kim, H., Virani, N., Xu, J., Zhua, M., Liu, P.: RoboADS: anomaly detection against sensor and actuator misbehaviors in mobile robots. In: Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 574–585 (2018)

    Google Scholar 

  5. García, Á., Facala, D., Díaz, U., Pigini, L., Blasi L., Qiu, R.: Inclusion of service robots in the daily lives of frail older users: a step-by step definition procedure on users’ requirements. Arch. Gerontol. Geriatr. 74, 191–196 (2018)

    Google Scholar 

  6. Baraka, K., Veloso, M.M.: Mobile service robot state revealing through expressive lights: formalism, design, and evaluation. Int. J. de Soc. Robot. 10, 65–92 (2017)

    Google Scholar 

  7. Campos, J., Jaramillo, S., Morales, L., Camacho, O.: PSO tuning for fuzzy PD + I controller applied to a mobile robot trajectory control. In: International Conference on Information Systems and Computer Science (INCISCOS), pp. 62–68 (2018)

    Google Scholar 

  8. Larkin, E.V., Antonov, M.A., Privalov, A.N.: The tricycle mobile robot movement simulation. In: ICMSC 2018, pp. 1–5 (2018)

    Google Scholar 

  9. Vargas, M.F., Sarzosa, D.S., Andaluz, V.H.: Unified nonlinear control for car-like mobile robot 4 wheels steering. In: Mendes A., Yan Y., Chen S. (eds) Intelligent Robotics and Applications, pp. 182–194, 2018.

    Google Scholar 

  10. Valero F., Rubio, F.: Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-Like Robot, pp. 1–12. Cambridge University Press (2019)

    Google Scholar 

  11. Sarmento, L., Nunes, F., Santos Martins, R., Sepúlveda J., Sena Esteves, J.: Remote control system for a mobile platform with four Mecanum wheels. Int. J. Mech. Appl. Mech. 2017(1), 274–281 (2017)

    Google Scholar 

  12. Andaluz, V.H., Carvajal C.P., Arteaga, O.: Unified Dynamic Control of Omnidirectional Robots, pp. 673–685. Springer International Publishing AG (2017)

    Google Scholar 

  13. Andaluz, V.H., Carvajal, C.P., Santana, A., Zambrano, G.V.D., Pérez, J.A.: Navigation and Dynamic Control of Omnidirectional Platforms, pp. 661–672. Springer International Publishing AG 2017 (2017)

    Google Scholar 

  14. Andaluz, V.H., Canseco, P., Varela J., Ortiz, J.S.: Modeling and control of a wheel-chair considering center of mass lateral displacements. In: ICIRA 2015, pp. 254–270 (2015)

    Google Scholar 

  15. Chen C.-M., Liu, F.-H.: Approach, the discrete-time equivalent of an analogue controller by a compensated. Int. J. Syst. Sci., pp. 287–294 (2001)

    Google Scholar 

  16. Gallo, L.V., Paste, B.D., Andaluz, V.H.: Control of an Omnidirectional Robot Based on the Kinematic and Dynamic Model. Springer Nature Switzerland AG 2021 (2021)

    Google Scholar 

  17. Ortiz, J.S., Palacios-Navarro, G., Andaluz, V.H., Recalde, L.F.: Three-dimensional unified motion control of a Robotic standing wheelchair for rehabilitation purposes. Sens. 21(9), 3057 (2021). https://doi.org/10.3390/s21093057

Download references

Acknowledgements

The authors would like to thank the Universidad de las Fuerzas Armadas ESPE; Universidad Tecnológica Indoamérica; SISAu Research Group, and the Research Group ARSI, for the support for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallo, L.V., Paste, B.D., Varela-Aldás, J., Andaluz, V.H. (2022). Modeling and Control of Omnidirectional Robots with Displaced Center of Mass. In: Mesquita, A., Abreu, A., Carvalho, J.V. (eds) Perspectives and Trends in Education and Technology. Smart Innovation, Systems and Technologies, vol 256. Springer, Singapore. https://doi.org/10.1007/978-981-16-5063-5_57

Download citation

Publish with us

Policies and ethics