Skip to main content

Virtual Environments to Fuzzy Control Applied to Nonlinear Autoclave Reactor

  • Conference paper
  • First Online:
Perspectives and Trends in Education and Technology

Abstract

This paper presents the design and implementation of a control algorithm based on fuzzy logic oriented to the area of teaching–learning processes in the chemical industry, more specifically of a nonlinear autoclave reactor. In order to evaluate the dynamic behavior against fuzzy control, an integration of software (MATLAB and Unity 3D) was developed, connected through DLL shared memories. The first software houses the fuzzy logic controller based on fuzzy sets and previously established linguistic variables; on the other hand, Unity 3D houses the dynamic model of the autoclave in order to simulate its real behavior. The latter software allows a more realistic conception of the chosen process, which is why we chose to design an immersive and interactive virtual environment with the virtual implementation of different elements of industrial instrumentation such as transmitters, valves, signaling, etc., animation of valves, control panels and a SCADA system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. O. I. B. M. B. M. S., Stankovski, S.: The impact of edge computing on industrial automation. In: 19th International Symposium Infoteh-Jahorina (Infoteh), pp. 1–4 (2020)

    Google Scholar 

  2. J. O. B. M. A. G. H. W. S., Ahmed, K.: Software defined networks in industrial automation. J. Sens. Actuator Netw. pp. 1–3 (2018)

    Google Scholar 

  3. Ellem, B.: Geographies of the labour process: automation and the spatiality of mining. Work, Employ. Soc. 30(6) 932–948 (2016)

    Google Scholar 

  4. M. F. O. N. H. N. A. M. F. T., Bahrin, M.A.K.: Industry 4.0: a review on industrial automation and robotic. Jurnal Teknologi, pp. 137–139 (2016)

    Google Scholar 

  5. Ortiz, J.S., et al.: Virtual training for industrial automation processes through pneumatic controls. In: Augmented Reality, Virtual Reality, and Computer Graphics, pp. 516–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_37

  6. Zambrano, J.I., et al.: Multi-user virtual system for training of the production and bottling process of soft drinks. In: 15th Iberian Conference on Information Systems and Technologies (CISTI). IEEE (2020)

    Google Scholar 

  7. Porras, A.P., Solis, C.R., Andaluz, V.H., Sánchez, J.S., Naranjo, C.A.: Virtual training system for an industrial pasteurization process. In: Augmented Reality, Virtual Reality, and Computer Graphics, pp. 430–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25999-0_35

  8. Noel, R.D., Jacob, C.: Unscented Kalman filter based nonlinear model predictive control of A Ldpe, Elsevier 21(9), 1332–1344 (2011)

    Google Scholar 

  9. R. Y. B. S., Graus, M.E.G.: Influencia De Los Organizadores Del Curriculum En La Planificación De La Contextualización Didáctica De La Matemática. Boletin Virtual 6(1), 23 (2017)

    Google Scholar 

  10. A. S. P. M. C. S. N., Rodríguez, J.J.V.: Diseño Y Usabilidad De Interfaces Para Entornos. Digitaleducation

    Google Scholar 

  11. N. M. M. M., Olivencia, J.J.L.: Tecnologías De Geolocalización Y Realidad Aumentada En Contextos Educativos: Experiencias Y Herramientas Didácticas. Dim 0(1), 1–3 (2015)

    Google Scholar 

  12. A. A.-G. E. R.-G. A. G. A.-F., Galvan-Bobadilla, I.: Virtual Reality Training System For The Maintenance Of Underground Lines In Power Distribution System. Instituto De Investigaciones Eléctricas, Cuernavaca Mexico (2015)

    Google Scholar 

  13. Mora, C.G.: Videojuego Con Realidad Virtual. Escuela Politecnica Superior, Alicante (2017)

    Google Scholar 

  14. Dinie Muhammad, N.A.: Control schemes for low density polyethylene reactor. Chem. Eng. Trans. 56(1), 1–6 (2017)

    Google Scholar 

  15. M. O. O. A., Sekia, H.: Industrial application of a nonlinear model predictive control to polymerization reactors. Control Eng. Pract. 9(1), 1–5 (2001)

    Google Scholar 

  16. A. V. &. V. C. &. M. G., Marconi, M.: Comparative life cycle assessment and cost analysis of autoclave. Int. J. Adv. Manuf. Technol. 1(2), 1–4 (2019)

    Google Scholar 

  17. Ouyang, S.-G., Wang, G. Yao, J.-Y.: A Unity 3d-Based Interactive Three-Dimensional Virtual Practice. Wiley Periodicals, China (2016)

    Google Scholar 

  18. D. M. R.-S. R. M.-D., Hernández-Pedrera, C.: Estudio De Sensibilidad Parametrica En Reactores Continuos Con Agitacion. Tecnologia Quimica Xxxiv(1), 54–61 (2013)

    Google Scholar 

  19. Montes-Valencia, N.: La Industria Química: Importancia Y Retos. Lámpsakos 14, 72–85 (2015)

    Google Scholar 

  20. Andaluz, V.H.: Unity 3d-Matlab simulator In real time for robotics applications. In: De Conference Paper, 2017

    Google Scholar 

  21. Ortiz, J.S., Palacios-Navarro, G., Andaluz, V.H., Guevara, B.S.: Virtual reality-based framework to simulate control algorithms for robotic assistance and rehabilitation tasks through a standing wheelchair. Sensors 21(15), 5083 (2021). https://doi.org/10.3390/s21155083

Download references

Acknowledgements

The authors would like to thank the Universidad de las Fuerzas Armadas ESPE; Universidad Tecnológica Indoamérica; SISAu Research Group, and the Research Group ARSI, for the support for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chimbana, L.I. et al. (2022). Virtual Environments to Fuzzy Control Applied to Nonlinear Autoclave Reactor. In: Mesquita, A., Abreu, A., Carvalho, J.V. (eds) Perspectives and Trends in Education and Technology. Smart Innovation, Systems and Technologies, vol 256. Springer, Singapore. https://doi.org/10.1007/978-981-16-5063-5_55

Download citation

Publish with us

Policies and ethics