Skip to main content

3D Virtual Training System for a Bioreactor Using Hardware-in-the-Loop

  • Conference paper
  • First Online:
Perspectives and Trends in Education and Technology

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 256))

  • 1094 Accesses

Abstract

This paper simulates a 3D virtual environment of a bioreactor based on the teaching-learning process in the engineering area. Using the Hardware-in-the-Loop simulation technique, the simulator was developed in the Unity 3D graphic engine, which is oriented to maintain in optimal conditions the variables involved in the process, such as: Biomass, recirculated biomass, dissolved oxygen, and chemical oxygen demand, the latter being the controlled variable. For the implemented simulator, traditional control techniques and modern control techniques are considered in order to evaluate the behavior of the variables. In order to give realism to the bioreactor, the hardware-in-the-Loop simulation technique is implemented in a low-cost hardware device, where the mathematical model of the process will be (On hardware-in-the-loop simulation. In 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain), while the control algorithm is implemented in the mathematical software Matlab. Finally, the stability analysis is performed having the variables in their optimal operating points, as well as the good performance of the controllers in the presence of disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makarova, I., Khabibullin, R., Belyaev, E., Bogateeva, A.: The application of virtual reality technologies in engineering education for the automotive industry. In: 2015 International Conference on Interactive Collaborative Learning (ICL), Firenze, Italy, pp. 536. IEEE (2015)

    Google Scholar 

  2. Krupnova, T., Rakova, O., Lut, A., Yudina, E., Shefer, E., Bulanova, A.: Virtual reality in environmental education for manufacturing sustainability in Industry 4.0. In: 2020 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, p. 87. IEEE (2020)

    Google Scholar 

  3. De Paolis, L.T., Bourdot, P. (eds.): AVR 2019. LNCS, vol. 11613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25965-5

  4. Teneda, F.I., Villacís, J.I., Espinosa, E.G., Andaluz V.H.: Conversational agent for industrial processes through virtual environments. In: Advances in Intelligent Systems and Computing, vol. 1368. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72654-6_21

  5. Interprika: https://interprika.com. Last accessed 28 Feb 2021

  6. Ortiz, J.S., et al.: Virtual training for industrial automation processes through pneumatic controls. In: Lecture Notes in Computer Science, vol. 10851. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_37

  7. De Paolis, L.T., Bourdot, P. (eds.): AVR 2020. LNCS, vol. 12243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58468-9_20

  8. Capece, N., Erra U.: StreamFlowVR: a tool for learning methodologies and measurement instruments for river flow through virtual reality. In: De Paolis (ed.) 6th International Conference AVR 2019, LNCS 11614. Springer, Italy (2019)

    Google Scholar 

  9. Romo, J.N., Tipantasi, G., Andaluz, V.: Virtual training on pumping stations for drinking water supply systems. In: De Paolis (ed.) 6th International Conference AVR 2019, LNCS 11614. Springer, Italy (2019)

    Google Scholar 

  10. Yugcha, E., Ubilluz, J., Andaluz, V.: Virtual training on pumping stations for drinking water supply systems. In: De Paolis (ed.) 6th International Conference AVR 2019, LNCS 11614. Springer, Italy (2019)

    Google Scholar 

  11. Chen, Z.: Dynamics of mathematical models for bioreactors. In: 2017 Bulletin of the Australian Mathematical Society, Australia, pp. 519–520

    Google Scholar 

  12. Ortiz, J.S., Palacios-Navarro, G., Andaluz, V.H., Guevara, B.S.: Virtual reality-based framework to simulate control algorithms for robotic assistance and rehabilitation tasks through a standing wheelchair. Sensors 21(15), 5083 (2021). https://doi.org/10.3390/s21155083

  13. Zhao, L., Tian, H.: Hardware-in-the-loop simulation system for process control. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun. IEEE (2018)

    Google Scholar 

  14. Martinez, S., Morales, M., Stability analysis of an activated sludge bioreactor at a petrochemical plant at different temperatures. Int. J. Chem. Reactor Eng. 3, 1–9 (2005)

    Google Scholar 

  15. Zambrano, J., Bermeo, D., Naranjo, C., Andaluz, J.: Multi-user virtual system for training of the production and bottling process of soft drinks. In: 15th Iberian Conference on Information Systems and Technologies (CISTI), Seville, Spain. IEEE (2020)

    Google Scholar 

  16. Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005). IEEE

    Google Scholar 

  17. Zhou, Y., Qi, B., Huang, S., Jia, Z.: Fuzzy PID controller for FOPDT system based on a hardware-in-the-loop simulation. In: 2018 37th Chinese Control Conference (CCC), Wuhan, China. IEEE (2018)

    Google Scholar 

  18. Bacic, M.: On hardware-in-the-loop simulation. In: 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, p. 3194. IEEE (2005)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Coorporación Ecuatoriana para el Desarrollo de la Investigación y Academia CEDIA for their contribution in innovation, through the CEPRA projects, especially the project CEPRA-XIV-2020-08-RVA “Tecnologías Inmersivas Multi-Usuario Orientadas a Sistemas Sinérgicos de Enseñanza-Aprendizaje”; also the Universidad de las Fuerzas Armadas ESPE and the Research Group ARSI, for the support for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy J. Pilicita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gutiérrez, K.J., Pilicita, J.J., Naranjo, C.A., Andaluz, V.H. (2022). 3D Virtual Training System for a Bioreactor Using Hardware-in-the-Loop. In: Mesquita, A., Abreu, A., Carvalho, J.V. (eds) Perspectives and Trends in Education and Technology. Smart Innovation, Systems and Technologies, vol 256. Springer, Singapore. https://doi.org/10.1007/978-981-16-5063-5_48

Download citation

Publish with us

Policies and ethics