Skip to main content

Trends in Terahertz Biomedical Applications

  • Chapter
  • First Online:
Generation, Detection and Processing of Terahertz Signals

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 794))

Abstract

Terahertz radiation has drawn enormous attention in recent times due to its various application possibilities. This chapter reviews various emerging trends and well-established technologies in Terahertz biomedical. Due to its extraordinary sensing capabilities, non-invasive, non-ionizing properties, sensitive instrumentations for spectroscopy and imaging, Terahertz has found various biomedical sensing applications from biomolecules, proteins to cells and tissues. This chapter highlights terahertz device engineering, system technologies, range of materials, aiming at various biomedical applications. It also includes emerging topics such as terahertz biomedical imaging, pattern recognition and tomographic reconstruction by machine learning and artificial intelligence, for possible biomedical imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biswas A, Sinha S, Acharyya A, Banerjee A, Pal S, Satoh H, Inokawa H (2018) 1.0 THz GaN IMPATT source: effect of parasitic series resistance. J Infrared Millimeter Terahertz Waves 39(10):954–974

    Google Scholar 

  2. Acharyya A, Biswas A, Sarkar B, Banerjee A, Inokawa H (2021) Terahertz radiation from gallium phosphide avalanche transit time sources. In: Emerging trends in terahertz engineering and system technologies. Springer Nature, ISBN 978-981-15-9765-7

    Google Scholar 

  3. Banerjee P, Acharyya A, Biswas A, Bhattacharjee AK, Banerjee A, Inokawa H (2018) Noise performance of magnetic field tunable avalanche transit time source. Int J Electron Commun Eng 12(10):718–728

    Google Scholar 

  4. Martyniuk P, Antoszewski J, Martyniuk M, Faraone L, Rogalski A (2014) New concepts in infrared photodetector designs. Appl Phys Rev 1:041102

    Google Scholar 

  5. Dhillon SS et al (2017) The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 50:043001

    Google Scholar 

  6. Lewis RA (2019) A review of terahertz detectors. J Phys D Appl Phys 52:433001

    Google Scholar 

  7. Graf UU, Honingh CE, Jacobs K, Stutzki J (2015) Terahertz heterodyne array receivers for astronomy. J Infrared Milli Terahz Waves 36:896–921

    Article  Google Scholar 

  8. Banerjee A, Satoh H, Tiwari A, et al (2017) Width dependence of platinum and titanium thermistor characteristics for application in room-temperature antenna-coupled terahertz microbolometer. Jpn J Appl Phys 56:04CC07

    Google Scholar 

  9. Banerjee A, Satoh H, Sharma Y, Hiromoto N, Inokawa H (2018) Characterization of platinum and titanium thermistors for terahertz antenna-coupled bolometer applications. Sens Actuators A Phys 273:49–57

    Article  Google Scholar 

  10. Banerjee A, Satoh H, Elamaran D, Sharma Y, Hiromoto N, Inokawa H (2018) Optimization of narrow width effect on titanium thermistor in uncooled antenna-coupled terahertz microbolometer. Jpn J Appl Phys 57:04FC09

    Google Scholar 

  11. Banerjee A, Satoh H, Elamaran D, Sharma Y, Hiromoto N, Inokawa H (2019) Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor. J Appl Phys 125:214502

    Google Scholar 

  12. Elamaran D, Suzuki Y, Satoh H, Banerjee A, Hiromoto N, Inokawa H (2020) Performance comparison of SOI-based temperature sensors for room-temperature terahertz antenna-coupled bolometers: MOSFET, PN junction diode and resistor. Micromachines 11(8):718

    Article  Google Scholar 

  13. Banerjee A, Vajandar S, Basu T (2020) Prospects in medical applications of terahertz waves. In: Banerjee A, Chakraborty B, Inokawa H, Roy JN (eds) Terahertz biomedical and healthcare technologies materials to devices. Elsevier, Amsterdam, Netherlands, pp 145–165

    Google Scholar 

  14. Banerjee A, Chakraborty C, Rathi M (2020) Medical imaging, artificial intelligence, internet of things, wearable devices in Terahertz healthcare technologies. In: Banerjee A, Chakraborty B, Inokawa H, Roy JN (eds) Terahertz biomedical and healthcare technologies materials to devices. Elsevier, Amsterdam, Netherlands, pp 225–239

    Google Scholar 

  15. Karthikeyan MP, Samanta D, Banerjee A, Roy A, Inokawa H (2021) Design and development of terahertz medical screening devices. In: Trends in wireless communication and information security, Lecture notes in electrical engineering. Springer Nature, ISSN 1876-1100

    Google Scholar 

  16. Banerjee A, Chakraborty C, Kumar A, Biswas D (2020) Emerging trends in IoT and big data analytics for biomedical and health care technologies. In: Balas VE, Solanki VK, Kumar R, Khari M (eds) Handbook of data science approaches for biomedical engineering. Academic Press, MA, USA, pp 121–152

    Google Scholar 

  17. Basu T, Banerjee A, Vajandar S (2020) 2D materials as THz generators, detectors, and modulators: potential candidates for biomedical applications. In: Banerjee A, Chakraborty B, Inokawa H, Roy JN (eds) Terahertz biomedical and healthcare technologies. Elsevier, Amsterdam, Netherlands, pp 75–87

    Google Scholar 

  18. Samanta D, Karthikeyan MP, Banerjee A, Inokawa H (2021) Tunable graphene nanopatch antenna design for on-chip integrated terahertz detector arrays with potential application in cancer imaging. Nanomedicine 16(12):1035–1047

    Article  Google Scholar 

  19. Bogue R (2018) Sensing with terahertz radiation: a review of recent progress. Sens Rev 38:216–222

    Article  Google Scholar 

  20. Zhang M, Yeow JTW (2016) Nanotechnology-based terahertz biological sensing: a review of its current state and things to come. IEEE Nanotechnol Mag 10:30–38

    Article  Google Scholar 

  21. Stantchev RI et al (2016) Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci Adv 2:e1600190

    Google Scholar 

  22. Yu C, Fan S, Sun Y, Pickwell-MacPherson E (2012) The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant Imaging Med Surg 2:33–45

    Google Scholar 

  23. Lee WSL, Withayachumnanku AFW, Able JA (2020) Assessing frost damage in barley using terahertz imaging. Opt Express 28 (21):30644

    Google Scholar 

  24. Berger JS (2020) Self-aligned on-chip coupled photonic devices using individual cadmium sulfide nanobelts. Nano Res 13(5):1413–1418

    Article  Google Scholar 

  25. Agarwal D et al (2019) Nanocavity-enhanced giant stimulated raman scattering in Si nanowires in the visible light region. Nano Lett 19:1204–1209

    Article  Google Scholar 

  26. Watts CM et al (2014) Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 8:605–609

    Article  Google Scholar 

  27. Liu W, Lu Y, Zhou Z, Li G (2019) Fourier single-pixel imaging in the terahertz regime. Appl Phys Lett 115:021101

    Google Scholar 

  28. Stantchev RI, Yu X, Blu T, Pickwell-MacPherson E (2020) Real-time terahertz imaging with a single-pixel detector. Nat Commun 11:2535

    Article  Google Scholar 

  29. Agarwal D, Yoo J, Pan A, Agarwal R (2019) Cavity engineering of photon−phonon interactions in Si nanocavities. Nano Lett 19:7950–7956

    Article  Google Scholar 

  30. Agarwal D et al (2017) Engineering localized surface plasmon interactions in gold by silicon nanowire for enhanced heating and photocatalysis. Nano Lett 17:1839–1845

    Article  Google Scholar 

  31. Romeo L et al (2013) Nanowire-based field effect transistors for terahertz detection and imaging systems Nanotechnology 24:214005

    Google Scholar 

  32. Ravaro M et al (2014) Detection of a 2.8 THz quantum cascade laser with a semiconductor nanowire field-effect transistor coupled to a bow-tie antenna. Appl Phys Lett 104:083116

    Google Scholar 

  33. Han R et al (2013) Active terahertz imaging using Schottky Diodes in CMOS: array and 860-GHz pixel. IEEE J Solid-State Circ 48:2296–2308

    Article  Google Scholar 

  34. Knap W et al (2004) Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl Phys Lett 85:675–677

    Google Scholar 

  35. Tauk R, et al (2006) Plasma wave detection of terahertz radiation by silicon field e_ects transistors: Responsivity and noise equivalent power. Appl Phys Lett 89:253511

    Google Scholar 

  36. Elamaran D et al (2020) Performance comparison of SOI-based temperature sensors for room-temperature terahertz antenna-coupled bolometers: MOSFET PN junction diode and resistor. Micromachines 11:718

    Article  Google Scholar 

  37. Perenzoni D, Perenzoni M, Gonzo L, Capobianco AD, Sacchetto F (2010) Analysis and design of a CMOS-based terahertz sensor and readout. Opt Sens Detect 7726:772618

    Google Scholar 

  38. Schuster F et al (2011) Broadband terahertz imaging with highly sensitive silicon CMOS detectors. Opt Express 19:7827–7832

    Article  Google Scholar 

  39. www.terasense.com

  40. Muravev VM, Gusikhin PA, Andreev IV, Kukushkin IV (2015) Novel relativistic plasma excitations in a gated two-dimensional electron system. Phys Rev Lett 114:106805

    Google Scholar 

  41. www.thruvision.com

  42. Kowalski M, Piszczek M, Palka N, Szustakowski M (2012) Improvement of passive THz camera images. Proc SPIE8544, 85440N

    Google Scholar 

  43. Siegel PH (2004) Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech 52(10):2438–2447. https://doi.org/10.1109/TMTT.2004.835916

    Article  Google Scholar 

  44. Markelz A, Whitmore S, Hillebrecht J, Birge R (2002) THz time domainspectroscopy of bimolecular conformational modes. Phys Med Biol 47(21):3797–3805

    Article  Google Scholar 

  45. Mickan SP, Menikhu A, Liu H, Mannella CA, MacColl R, Abbott D, Munch J, Zhang X-C (2002) Label-free bioaffinity detection using terahertz technology. Phys Med Biol 47(21):3789–3795

    Article  Google Scholar 

  46. Hartwick TS, Hodges DT, Barker DH, Foote FB (1976) Far infraredimagery. Appl Opt 15(8):1919–1922

    Article  Google Scholar 

  47. Khadri SKA, et al (2014) Approach of message communication using fibonacci series: in cryptology. In: Lecture notes on information theory. https://doi.org/10.12720/lnit.2.2.168-171

  48. Samanta D, Paul M, Khutubuddin S, Khadri A (2013) Message communication using phase shifting method (PSM). Int J Adv Res Comput Sci 4(11):9–11. https://doi.org/10.26483/ijarcs.v4i11.1936

  49. Mukherjee M, Samanta D (2014) Fibonacci based text hiding using image cryptography. In: Lecture notes on information theory, vol 2, no 2, pp 172-–176. https://doi.org/10.12720/lnit.2.2.172-176

  50. Khadri SKA et al (2016) Message encryption using pascal triangle multiplication. Cryptol Asian J Math Comput Res 13(4): 262–270

    Google Scholar 

  51. Jaferi F, Saeid KT, Borah L, Samanta D (2016) Recognition of potential drug-drug interactions in diabetic’s patients in hospital pharmacy. Int J Control Theor Appl 10(9): 481–487. ISSN : 0974-5572

    Google Scholar 

  52. Kuchy SA, Khadri SKA, Mukherjee M, Samanta D, Le D-N (2017) An aggregation approach based on elasticsearch. J Eng Appl Sci 12:9451–9454. https://doi.org/10.36478/jeasci.2017.9451.9454

  53. Manu MK, Roy S, Samanta D (2018) Effects of liver cancer drugs on cellular energy metabolism in hepatocellular carcinoma cells. Int J Pharmaceut Res 10(3). https://doi.org/10.31838/ijpr/2018.10.03.079. ISSN -0975-2366

  54. Yamaguchi S, Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S (2016) Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci Rep 6:30124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, D., Karthikeyan, M.P., Agarwal, D., Biswas, A., Acharyya, A., Banerjee, A. (2022). Trends in Terahertz Biomedical Applications. In: Acharyya, A., Biswas, A., Das, P. (eds) Generation, Detection and Processing of Terahertz Signals. Lecture Notes in Electrical Engineering, vol 794. Springer, Singapore. https://doi.org/10.1007/978-981-16-4947-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4947-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4946-2

  • Online ISBN: 978-981-16-4947-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics