Skip to main content

Cellulose Acetate/ABS Blends as Insulating Phases for 3D Printing of Carbon-Based Composite Sensors

  • Conference paper
  • First Online:
Developments and Advances in Defense and Security

Abstract

This work aims to evaluate the use of cellulose acetate (CA) as a modifier for the acrylonitrile–butadiene–styrene/graphite (ABS/GR) composite electrode, intending the use of renewable sources in the manufacture of sustainable filaments for the direct FDM sensors construction. ABS/CA blends were prepared in different proportions by casting method, replacing pure ABS in the 65% w/w ABS/GR composite electrodes. The blends were characterized by FTIR and TGA/DTG. The modified ABS/CA/GR electrodes were evaluated for surface by AFM, and electrochemically by cyclic voltammetry (CV). FTIR and TGA/DTG curves showed satisfactory proportions, with emphasis on the proportions of 5 and 10% w/w, whose thermal decomposition profiles did not differ substantially from pure ABS, up to 10% w/w blends. The presence of CA in the electrode composition promoted an increase in the surface smoothing (lower roughness) due to the CA gelation effect on dissolution in acetone. The CV data interestingly demonstrated an increase in the electroactive area and heterogeneous electron transfer rate constant (k°), demonstrating that there was an improvement in the load transfer kinetics, with electrocatalysis evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.N.: Carbon paste electrodes. Anal. Chem. 30, 1576 (1958). https://doi.org/10.1021/ac60141a600

    Article  Google Scholar 

  2. Olson, C., Adams, R.N.: Carbon paste electrodes application to anodic voltammetry. Anal. Chim. Acta 22, 582–589 (1960). https://doi.org/10.1016/S0003-2670(00)88341-5

    Article  Google Scholar 

  3. Tajik, S., Beitollahi, H., Nejad, F.G., Shoaie, I.S., Khalilzadeh, M.A., Asl, M.S., Van Le, Q., Zhang, K., Jang, H.W., Shokouhimehr, M.: Recent developments in conducting polymers: applications for electrochemistry. RSC Adv. 10, 37834–37856 (2020). https://doi.org/10.1039/d0ra06160c

    Article  Google Scholar 

  4. Baccarin, M., Cervini, P., Cavalheiro, E.T.G.: Comparative performances of a bare graphite-polyurethane composite electrode unmodified and modified with graphene and carbon nanotubes in the electrochemical determination of escitalopram. Talanta 178, 1024–1032 (2018). https://doi.org/10.1016/j.talanta.2017.08.094

    Article  Google Scholar 

  5. Furtado, L.A., Pohlmann, B.C., Azevedo, A.L.M., Rocha, A.A., Semaan, F.S.: Graphite-epoxi based composite electrodes as substrate for the electrodeposition of nickel films for determination of sulfide in oil industry samples. Rev. Virtual Quim. 7, 1728–1742 (2015). https://doi.org/10.5935/1984-6835.20150098

    Article  Google Scholar 

  6. Tallman, D.E., Petersen, S.L.: Composite electrodes for electroanalysis: principles and applications. Electroanalysis 2, 499–510 (1990). https://doi.org/10.1002/elan.1140020702

    Article  Google Scholar 

  7. Mascini, M., Pallozzi, F., Liberti, A.: A polythene graphite electrode for voltammetry. Anal. Chim. Acta 64, 126–131 (1973). https://doi.org/10.1016/S0003-2670(00)86900-7

    Article  Google Scholar 

  8. Silva, F.D., Rocha, R.G., Rocha, D.P., Semaan, F.S., Dornellas, R.M.: In situ electrochemical exfoliation of embedded graphite to superficial graphene sheets for electroanalytical purposes. Electrochim. Acta (2020). https://doi.org/10.1016/j.jmii.2020.03.034

    Article  Google Scholar 

  9. Vaněčková, E., Bouša, M., Nováková Lachmanová, Š., Rathouský, J., Gál, M., Sebechlebská, T., Kolivoška, V.: 3D printed polylactic acid/carbon black electrodes with nearly ideal electrochemical behaviour. J. Electroanal. Chem. 857 (2020). https://doi.org/10.1016/j.jelechem.2019.113745

  10. Habibi, B., Abazari, M., Pournagui-Azar, M.H.: A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry. Chin. J. Catal. 33, 1783–1790 (2012). https://doi.org/10.1016/S1872-2067(11)60438-5

    Article  Google Scholar 

  11. Mikhraliieva, A., Zaitsev, V., Tkachenko, O., Nazarkovsky, M., Xing, Y., Benvenutti, E.V.: Graphene oxide quantum dots immobilized on mesoporous silica: preparation, characterization and electroanalytical application. RSC Adv. 10, 31305–31315 (2020). https://doi.org/10.1039/d0ra04605a

    Article  Google Scholar 

  12. Cardoso, R.M., Silva, P.R.L., Lima, A.P., Rocha, D.P., Oliveira, T.C., do Prado, T.M., Fava, E.L., Fatibello-Filho, O., Richter, E.M., Muñoz, R.A.A.: 3D-printed graphene/polylactic acid electrode for bioanalysis: biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sens. Actuators B Chem. 307 (2020). https://doi.org/10.1016/j.snb.2019.127621

  13. João, A.F., Squissato, A.L., Richter, E.M., Muñoz, R.A.A.: Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode. Anal. Bioanal. Chem. (2020). https://doi.org/10.1007/s00216-020-02513-y

    Article  Google Scholar 

  14. Ambrosi, A., Webster, R.D., Pumera, M.: Electrochemically driven multi-material 3D-printing. Appl. Mater. Today 18, 100530 (2020). https://doi.org/10.1016/j.apmt.2019.100530

    Article  Google Scholar 

  15. Barbosa, J.R., Amorim, P.H.O., Gonçalves, M.C., Dornellas, R.M., Pereira, R.P., Semaan, F.S.: Evaluation of 3D printing parameters on the electrochemical performance of conductive polymeric components for chemical warfare agent sensing. In: Smart Innovation, Systems and Technologies, pp. 425–435 (2020). https://doi.org/10.1007/978-981-13-9155-2_34

  16. Wang, Q., Sun, J., Yao, Q., Ji, C., Liu, J., Zhu, Q.: 3D printing with cellulose materials. Cellulose 25, 4275–4301 (2018). https://doi.org/10.1007/s10570-018-1888-y

    Article  Google Scholar 

  17. Dickmann, M., Tarter, S., Egger, W., Pegoretti, A., Rigotti, D., Brusa, R.S., Checchetto, R.: Interface nanocavities in poly (lactic acid) membranes with dispersed cellulose nanofibrils: their role in the gas barrier performances. Polymer (Guildf.) 202, 122729 (2020). https://doi.org/10.1016/j.polymer.2020.122729

    Article  Google Scholar 

  18. Mohan, D., Teong, Z.K., Bakir, A.N., Sajab, M.S., Kaco, H.: Extending cellulose-based polymers application in additive manufacturing technology: a review of recent approaches. Polymers (Basel) 12, 1876 (2020). https://doi.org/10.3390/polym12091876

    Article  Google Scholar 

  19. Böhler, S., Bartel, M., Bohn, A., Jacob, R., Ganster, J., Büsse, T., Balko, J.: Highly dense cellulose acetate specimens with superior mechanical properties produced by fused filament fabrication. Polymer (Guildf.) 194 (2020). https://doi.org/10.1016/j.polymer.2020.122388

  20. Barud, H.S., de Araújo Júnior, A.M., Santos, D.B., de Assunção, R.M.N., Meireles, C.S., Cerqueira, D.A., Rodrigues Filho, G., Ribeiro, C.A., Messaddeq, Y., Ribeiro, S.J.L.: Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim. Acta 471, 61–69 (2008). https://doi.org/10.1016/j.tca.2008.02.009

  21. Wang, J., Tuzhi, P.: Composite polymeric films on electrodes: incorporation of poly(4-vinylpyridine) into base-hydrolyzed cellulose acetate coating. J. Electrochem. Soc. 134, 586–591 (1987). https://doi.org/10.1149/1.2100513

    Article  Google Scholar 

  22. Casella, I.G., Gioia, D., Rutilo, M.: A multi-walled carbon nanotubes/cellulose acetate composite electrode (MWCNT/CA) as sensing probe for the amperometric determination of some catecholamines. Sens. Actuators B Chem. 255, 3533–3540 (2018). https://doi.org/10.1016/j.snb.2017.09.188

    Article  Google Scholar 

  23. Barsan, M.M., Pinto, E.M., Florescu, M., Brett, C.M.A.: Development and characterization of a new conducting carbon composite electrode. Anal. Chim. Acta 635, 71–78 (2009). https://doi.org/10.1016/j.aca.2009.01.012

    Article  Google Scholar 

  24. Oliveira, F.Q.: Preparo e caracterizações de novas blendas biodegradáveis renováveis para uso em filamentos para futura impressão 3D e uso em sensores. Universidade Federal Fluminense. https://app.uff.br/riuff/handle/1/15240 (2019)

  25. Navarro-Laboulais, J., Trijueque, J., Vicente, F., Scholl, H.: Voltammetric determination of optimal conductive load proportion in graphite-epoxy composite electrodes. J. Electroanal. Chem. 379, 159–163 (1994). https://doi.org/10.1016/0022-0728(94)87134-5

    Article  Google Scholar 

  26. Trijueque, J., García-Jareño, J.J., Navarro-Laboulais, J., Sanmatías, A., Vicente, F.: Ohmic drop of Prussian-blue/graphite+epoxy electrodes. Electrochim. Acta 45, 789–795 (1999). https://doi.org/10.1016/S0013-4686(99)00257-1

    Article  Google Scholar 

  27. De Oliveira, G.C., Pereira, L.C., Silva, A.L., Semaan, F.S., Castilho, M., Ponzio, E.A.: Acrylonitrile-butadiene-styrene (ABS) composite electrode for the simultaneous determination of vitamins B2 and B6 in pharmaceutical samples. J. Solid State Electrochem. 1607–1619 (2018). https://doi.org/10.1007/s10008-018-3897-z

  28. Pedrotti, J.J., Angnes, L., Gutz, I.G.R.: Miniaturized reference electrodes with microporous polymer junctions. Electroanalysis 8, 673–675 (1996). https://doi.org/10.1002/elan.1140080713

    Article  Google Scholar 

  29. Santos, A.V.M.R.M., Botelho, G.L.: Artificial and natural weathering of ABS. J. Appl. Polym. Sci. 116, 2005–2014 (2010). https://doi.org/10.1002/app.31663

  30. Wypych, G.: ABS poly(acrylonitrile-co-butadiene-co-styrene) (2016). https://doi.org/10.1016/b978-1-895198-92-8.50005-7

  31. Xing, C., Wang, H., Hu, Q., Xu, F., Cao, X., You, J., Li, Y.: Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends. Carbohydr. Polym. 92, 1921–1927 (2013). https://doi.org/10.1016/j.carbpol.2012.11.058

    Article  Google Scholar 

  32. Kamal, H., Abd-Elrahim, F.M., Lotfy, S.: Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation. J. Radiat. Res. Appl. Sci. 7, 146–153 (2014). https://doi.org/10.1016/j.jrras.2014.01.003

    Article  Google Scholar 

  33. Vinodhini, P.A., Sangeetha, K., Thandapani, G., Sudha, P.N., Jayachandran, V., Sukumaran, A.: FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes. Int. J. Biol. Macromol. 104, 1721–1729 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.122

    Article  Google Scholar 

  34. de Freitas, R.R.M., Senna, A.M., Botaro, V.R.: Influence of degree of substitution on thermal dynamic mechanical and physicochemical properties of cellulose acetate. Ind. Crops Prod. 109, 452–458 (2017). https://doi.org/10.1016/j.indcrop.2017.08.062

    Article  Google Scholar 

  35. Yang, S., Castilleja, J.R., Barrera, E.V., Lozano, K.: Thermal analysis of an acrylonitrile-butadiene-styrene/SWNT composite. Polym. Degrad. Stab. 83, 383–388 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.08.002

    Article  Google Scholar 

  36. Arthanareeswaran, G., Thanikaivelan, P., Srinivasn, K., Mohan, D., Rajendran, M.: Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. Eur. Polym. J. 40, 2153–2159 (2004). https://doi.org/10.1016/j.eurpolymj.2004.04.024

    Article  Google Scholar 

  37. Chatterjee, P.K., Conrad, C.M.: Thermogravimetric analysis of cellulose. J. Polym. Sci. Part A-1 Polym. Chem. 6, 3217–3233 (1968). https://doi.org/10.1002/pol.1968.150061202

  38. Hanna, A.A., Basta, A.H., El-Saied, H., Abadir, I.F.: Thermal properties of cellulose acetate and its complexes with some transition metals. Polym. Degrad. Stab. 63, 293–296 (1999). https://doi.org/10.1016/S0141-3910(98)00108-6

    Article  Google Scholar 

  39. Paixao, T.R.L.C.: Measuring electrochemical surface area of nanomaterials versus Randles-Ševčík equation. ChemElectroChem 7, 3414–3415 (2020). https://doi.org/10.1002/celc.202000633

  40. Lavagnini, I., Antiochia, R., Magno, F.: An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16, 505–506 (2004). https://doi.org/10.1002/elan.200302851

    Article  Google Scholar 

  41. Nicholson, R.S., Shain, I.: Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 36, 706–723 (1964). https://doi.org/10.1021/ac60210a007

    Article  Google Scholar 

  42. Seredych, M., Chen, R., Bandosz, T.J.: Effects of the addition of graphite oxide to the precursor of a nanoporous carbon on the electrochemical performance of the resulting carbonaceous composites. Carbon N. Y. 50, 4144–4154 (2012). https://doi.org/10.1016/j.carbon.2012.04.062

    Article  Google Scholar 

  43. Park, S.K., Mahmood, Q., Park, H.S.: Surface functional groups of carbon nanotubes to manipulate capacitive behaviors. Nanoscale 5, 12304–12309 (2013). https://doi.org/10.1039/c3nr04858f

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Silva Semaan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amorim, P.H.O., Oliveira, F.Q., dos Santos, H.C., Pereira, R.P., Dornellas, R.M., Semaan, F.S. (2022). Cellulose Acetate/ABS Blends as Insulating Phases for 3D Printing of Carbon-Based Composite Sensors. In: Rocha, Á., Fajardo-Toro, C.H., Rodríguez, J.M.R. (eds) Developments and Advances in Defense and Security . Smart Innovation, Systems and Technologies, vol 255. Springer, Singapore. https://doi.org/10.1007/978-981-16-4884-7_20

Download citation

Publish with us

Policies and ethics