Skip to main content

Nanomaterials, Energy Devices and Defense: Metal Oxides and Supercapacitors

  • Conference paper
  • First Online:
Developments and Advances in Defense and Security

Abstract

The present work is an approach to the use of nanomaterials and energy storage and conversion devices—mainly supercapacitors—for the Defense area, aiming to describe, in its more general scope, aspects related to the concepts, tools and methods of nanotechnology related to such devices and their application. In particular, the development of nanomaterials (especially metal oxides and their nanocomposites), which are optimized and applied in devices according to their functionalities, has been pointed out as one of the most promising tools improvement of energy devices, focusing on the area of Defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar, V.V., Gayathri, K., Anthony, S.P.: Synthesis of α-MoO3 nanoplates using organic aliphatic acids and investigation of sunlight enhanced photodegradation of organic dyes. Mater. Res. Bull. 76, 147–154 (2016)

    Article  Google Scholar 

  2. Amaral, T.B.S., Soares, I.H.W., Semaan, F.S., Pereira, R.P.: Nanomateriais e dispositivos para a área Defesa. RISTI E18, 409–420 (2019)

    Google Scholar 

  3. Werneck, I.H.S.R., Assis, M.B.S., Pereira, R.P.: Molybdenum oxide micro- and nanorods: structure and thermal properties dependent on perturbation during synthesis. Mater. Res. Express 5(105009), 1–16 (2018)

    Google Scholar 

  4. Chen, C., Fan, Y., Gu, J., Wu, L., Passerini, S., Mais, L.: One-dimensional nanomaterials for energy storage. J. Phys. D Appl. Phys. 51(11), 113002 (2018)

    Google Scholar 

  5. Assis, M.B.S., Werneck, I.H.S.R., Moraes, G.N., Semaan, F.S., Pereira, R.P.: Citrate-capped iron oxide nanoparticles: ultrasound-assisted synthesis, structure and thermal properties. Mater. Res. Express 6(045064), 1–13 (2019)

    Google Scholar 

  6. Jagadale, A., Zhou, R., Dubal, D.P., Xu, J., Yang, S.: Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater. 19, 314–329 (2019)

    Google Scholar 

  7. Nobile, L., Nobile, S.: Recent advances of nanotechnology in medicine and engineering. Am. Inst. Phys. 020058, 1–4 (2016)

    Google Scholar 

  8. Oca, L., Guillet, N., Tessard, R., Iraola, U.: Lithium-ion capacitor safety assessment under electrical abuse tests based on ultrasound characterization and cell opening. J. Energy Storage 23, 29–36 (2019)

    Article  Google Scholar 

  9. Ho, M.Y., Khiew, P.S., Isa, D., Tan, T.K.: A review of metal oxide composite electrode materials for electrochemical capacitors. Nano Brief Rep. Rev. 9(6), 1430002 (2014)

    Google Scholar 

  10. Chen, D., Wang, Q., Wang, R., Shen, G.: Ternary oxide nanostructured materials for supercapacitors: a review. J. Mater. Chem. A 3, 10158–10173 (2015)

    Article  Google Scholar 

  11. Parnell, C.M., Chhetri, B.P., Mitchell, T.B., Watanabe, F., Kannarpady, G., RanguMagar, A.B., Zhou, H., Alghazali, K.M., Biris, A.S., Ghosh, A.: Simultaneous electrochemical deposition of cobalt complex and poly(pyrrole) thin films for supercapacitor electrodes. Sci. Rep. 9, 5650 (2019)

    Article  Google Scholar 

  12. Hamnett, P.A.C.: Techniques and Mechanisms in Electrochemistry, 2nd edn. Black Academic & Professional, London (1994)

    Google Scholar 

  13. Wang, F., Liu, Z., Mo, J., Li, C., Fu, L., Zhu, Y., Wu, X., Wu, Y.: A quasi-solid-state Li-ion capacitor with high energy density based on Li3VO4/carbon nanofibers and electrochemically-exfoliated graphene sheets. J. Mater. Chem. A 5, 14922–14929 (2017)

    Article  Google Scholar 

  14. Zhang, H.J., Wang, Y.K., Kong, L.B.: A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe2 nanosheets and its application as an anode for high-energy lithium-ion hybrid capacitors. Nanoscale 11, 7263–7276 (2019)

    Article  Google Scholar 

  15. Yu, P., Cao, G., Yi, S., Zhang, X., Li, C., Sun, X., Wang, K., Ma, Y.: Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10, 5906–5913 (2018)

    Article  Google Scholar 

  16. Liu, W., Li, J., Rasenthiram, L., Feng, K., Liu, Y., Lim, L., Lui, G., Tijandra, R., Chiu, G., Yu, A.: Advanced Li-ion hybrid supercapacitors based on 3D graphene-foam composites. Appl. Mater. Interfaces 8(39), 25941–25953 (2016)

    Article  Google Scholar 

  17. Zuo, W., Li, R., Zhou, C., Li, Y., Xia, J., Liu, J.: Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. News 1600539, 1–21 (2017)

    Google Scholar 

  18. Mombeshora, E.T., Nyamori, V.O.: A review on the use of carbon nanostructured materials in electrochemical capacitors. Int. J. Energy Res. 39, 1955–1980 (2015)

    Article  Google Scholar 

  19. Brousse, T., Bélanger, D., Long, J.W.: To be or not to be pseudocapacitive? J. Electrochem. Soc. 165(5), A5185–A5189 (2015)

    Article  Google Scholar 

  20. Dubal, D.P., Ayyad, O., Ruiz, V., Gómez-Romero, P.: Hybrid energy storage: the merging of battery and supercapacitor chemistries. R. Soc. Chem. 44, 1777–1790 (2015)

    Article  Google Scholar 

  21. Li, B.L., Zheng, J., Zhang, H., Jin, L., Yang, D., Lv, H., Shen, C., Shellikeri, A., Zheng, Y., Gong, R., Zheng, J.P., Zhang, C.: Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30(17), 1705670 (2018)

    Article  Google Scholar 

  22. Sk, M.M., Yue, C.Y., Ghosh, K., Jena, R.K.: Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 308, 121–140 (2016)

    Article  Google Scholar 

  23. Marandi, F., Hashemi, L., Morsali, A., Krautscheid, H.: Sonochemical synthesis and characterization of three nano zinc(II) coordination polymers; precursors for preparation of zinc(II) oxide nanoparticles. Ultrason. Sonochem. 32, 86–94 (2016)

    Article  Google Scholar 

  24. Luo, X., Morrin, A., Killard, A.J., Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4), 319–326 (2006)

    Article  Google Scholar 

  25. Gopalsamy, K., Xu, Z., Zheng, B., Huang, T., Kou, L., Zhao, X., Gao, C.: Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. R. Soc. Chem. 6, 8595–8600 (2014)

    Google Scholar 

  26. Ketenoglu, D., Spiekermann, G., Harder, M., Oz, E., Koz, C., Yagci, C.M., Yilmaz, E., Yin, Z., Sahli, C.J., Detlefs, B., Yavas, H.: X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell. J. Synchrotron Radiat. 25, 1–6 (2018)

    Article  Google Scholar 

  27. Mendes, T.M., Hotza, D., Repette, W.L.: Nanoparticles in cement based materials: a review. Rev. Adv. Mater. Sci. 40, 89–96 (2015)

    Google Scholar 

  28. Kefeni, K.K., Msagati, T.A.M., Mamba, B.B.: Ferrite nanoparticles: synthesis, characterization and applications in electronic device. Mater. Sci. Eng. B 215, 37–55 (2017)

    Article  Google Scholar 

  29. Nowak, A., Szade, J., Talik, E., Zubko, M., Wasilkowski, D., Dulski, M., Blain, K., Mrozik, A., Peszke, J.: Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles. Mater. Charact. 117, 9–16 (2016)

    Article  Google Scholar 

  30. Sayahi, H., Mohsenzadeh, F., Darabi, H.R., Aghapoor, K.: Facile and economical fabrication of magnetite/graphite nanocomposites for supercapacitor electrodes with significantly extended potential window. J. Alloys Compd. 778, 633–642 (2019)

    Article  Google Scholar 

  31. Chen, S., Bao, P., Wang, G.: Synthesis of Fe2O3-CNY-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage. Nano Energy 2(3), 425–434 (2013)

    Article  Google Scholar 

  32. Xiong, P., Huang, H., Wang, X.: Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors. J. Power Sources 245, 937–946 (2014)

    Article  Google Scholar 

  33. Zha, D., Xiong, P., Wang, X.: Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability. Electrochim. Acta 185, 218–228 (2018)

    Google Scholar 

  34. Sun, G., Zhang, X., Lin, R., Yang, J., Zhang, H., Chen, P.: Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. 127(15), 4734–4739 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank CNPq for fellowships and FAPERJ for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson Pacheco Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rezende, I.H.W.S., Semaan, F.S., Borges, L.E.P., Pereira, R.P. (2022). Nanomaterials, Energy Devices and Defense: Metal Oxides and Supercapacitors. In: Rocha, Á., Fajardo-Toro, C.H., Rodríguez, J.M.R. (eds) Developments and Advances in Defense and Security . Smart Innovation, Systems and Technologies, vol 255. Springer, Singapore. https://doi.org/10.1007/978-981-16-4884-7_19

Download citation

Publish with us

Policies and ethics