Skip to main content

Mathematical Simulation of Linear Ubiquitination in T Cell Receptor-Mediated NF-κB Activation Pathway

  • Conference paper
  • First Online:
Methods of Mathematical Oncology (MMDS 2020)

Abstract

The linear ubiquitin chain assembly complex (LUBAC), composed of the HOIP, HOIL-1L, and SHARPIN subunits, activates the canonical nuclear factor-κB (NF-κB) pathway through the Met1 (M1)-linked linear ubiquitination activity. On the course of the T cell receptor (TCR)-mediated NF-κB activation pathway, LUBAC transiently associates with and linearly ubiquitinates the CARMA1-BCL10-MALT1 (CBM) complex. In contrast, the linear ubiquitination of NEMO, a substrate of the TNF-α-induced NF-κB activation pathway, was limited in the TCR pathway. A linear ubiquitin-specific deubiquitinase (DUB), OTULIN, plays a major role in downregulating LUBAC-mediated TCR signaling. Mathematical modeling indicated that linear ubiquitination of the CBM complex accelerates the activation of IκB kinase (IKK), as compared with the activity induced by linear ubiquitination of NEMO alone. Moreover, simulations of the sequential linear ubiquitination of the CBM complex suggested that the allosteric regulation of linear (de)ubiquitination of CBM subunits is controlled by the ubiquitin-linkage lengths. Thus, unlike the TNF-α-induced NF-κB activation pathway, the TCR-mediated NF-κB activation in T cells has a characteristic mechanism to induce LUBAC-mediated NF-κB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Q., Lenardo, M.J., Baltimore, D.: 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168(1–2), 37–57 (2017). https://doi.org/10.1016/j.cell.2016.12.012

    Article  Google Scholar 

  2. Hayden, M.S., Ghosh, S.: NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26(3), 203–234 (2012). https://doi.org/10.1101/gad.183434.111

    Article  Google Scholar 

  3. Sasaki, K., Iwai, K.: Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Immunol. Rev. 266(1), 175–189 (2015). https://doi.org/10.1111/imr.12308

    Article  Google Scholar 

  4. Shimizu, Y., Taraborrelli, L., Walczak, H.: Linear ubiquitination in immunity. Immunol. Rev. 266(1), 190–207 (2015). https://doi.org/10.1111/imr.12309

    Article  Google Scholar 

  5. Ikeda, F.: Linear ubiquitination signals in adaptive immune responses. Immunol. Rev. 266(1), 222–236 (2015). https://doi.org/10.1111/imr.12300

    Article  Google Scholar 

  6. Rahighi, S., Ikeda, F., Kawasaki, M., Akutsu, M., Suzuki, N., Kato, R., et al.: Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136(6), 1098–1109 (2009)

    Article  Google Scholar 

  7. Fujita, H., Rahighi, S., Akita, M., Kato, R., Sasaki, Y., Wakatsuki, S., et al.: Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol. Cell Biol. 34(7), 1322–1335 (2014). https://doi.org/10.1128/MCB.01538-13

    Article  Google Scholar 

  8. Iwai, K., Fujita, H., Sasaki, Y.: Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Nat. Rev. Mol. Cell Biol. 15(8), 503–508 (2014). https://doi.org/10.1038/nrm3836

    Article  Google Scholar 

  9. Rittinger, K., Ikeda, F.: Linear ubiquitin chains: enzymes, mechanisms and biology. Open Biol. 7(4) (2017). https://doi.org/10.1098/rsob.170026

  10. Sasaki, Y., Sano, S., Nakahara, M., Murata, S., Kometani, K., Aiba, Y., et al.: Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 32(18), 2463–2476 (2013). https://doi.org/10.1038/emboj.2013.184

    Article  Google Scholar 

  11. Tokunaga, F., Nakagawa, T., Nakahara, M., Saeki, Y., Taniguchi, M., Sakata, S., et al.: SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471(7340), 633–636 (2011). https://doi.org/10.1038/nature09815

    Article  Google Scholar 

  12. Elliott, P.R., Nielsen, S.V., Marco-Casanova, P., Fiil, B.K., Keusekotten, K., Mailand, N., et al.: Molecular basis and regulation of OTULIN-LUBAC interaction. Mol. Cell 54(3), 335–348 (2014). https://doi.org/10.1016/j.molcel.2014.03.018

    Article  Google Scholar 

  13. Schaeffer, V., Akutsu, M., Olma, M.H., Gomes, L.C., Kawasaki, M., Dikic, I.: Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol. Cell 54(3), 349–361 (2014). https://doi.org/10.1016/j.molcel.2014.03.016

    Article  Google Scholar 

  14. Elliott, P.R., Leske, D., Hrdinka, M., Bagola, K., Fiil, B.K., McLaughlin, S.H., et al.: SPATA2 Links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63(6), 990–1005 (2016). https://doi.org/10.1016/j.molcel.2016.08.001

    Article  Google Scholar 

  15. Heger, K., Wickliffe, K.E., Ndoja, A., Zhang, J., Murthy, A., Dugger, D.L., et al.: OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559(7712), 120–124 (2018). https://doi.org/10.1038/s41586-018-0256-2

    Article  Google Scholar 

  16. Alcover, A., Alarcon, B., Di Bartolo, V.: Cell biology of T cell receptor expression and regulation. Annu. Rev. Immunol. 36, 103–125 (2018). https://doi.org/10.1146/annurev-immunol-042617-053429

    Article  Google Scholar 

  17. Au-Yeung, B.B., Shah, N.H., Shen, L., Weiss, A.: ZAP-70 in signaling, biology, and disease. Annu. Rev. Immunol. 36, 127–156 (2018). https://doi.org/10.1146/annurev-immunol-042617-053335

    Article  Google Scholar 

  18. Thome, M., Charton, J.E., Pelzer, C., Hailfinger, S.: Antigen receptor signaling to NF-κB via CARMA1, BCL10, and MALT1. Cold Spring Harb. Perspect. Biol. 2(9), a003004 (2010). https://doi.org/10.1101/cshperspect.a003004

    Article  Google Scholar 

  19. Meininger, I., Krappmann, D.: Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol. Chem. 397(12), 1315–1333 (2016). https://doi.org/10.1515/hsz-2016-0216

    Article  Google Scholar 

  20. Dubois, S.M., Alexia, C., Wu, Y., Leclair, H.M., Leveau, C., Schol, E., et al.: A catalytic-independent role for the LUBAC in NF-κB activation upon antigen receptor engagement and in lymphoma cells. Blood 123(14), 2199–2203 (2014). https://doi.org/10.1182/blood-2013-05-504019

    Article  Google Scholar 

  21. Satpathy, S., Wagner, S.A., Beli, P., Gupta, R., Kristiansen, T.A., Malinova, D., et al.: Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol. Syst. Biol. 11(6), 810 (2015). https://doi.org/10.15252/msb.20145880

    Article  Google Scholar 

  22. Yang, Y.K., Yang, C., Chan, W., Wang, Z., Deibel, K.E., Pomerantz, J.L.: Molecular determinants of scaffold-induced linear ubiquitinylation of B cell lymphoma/leukemia 10 (Bcl10) during T cell receptor and oncogenic caspase recruitment domain-containing protein 11 (CARD11) signaling. J. Biol. Chem. 291(50), 25921–25936 (2016). https://doi.org/10.1074/jbc.M116.754028

    Article  Google Scholar 

  23. Douanne, T., Gavard, J., Bidere, N.: The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling. J. Cell Sci. 129(9), 1775–1780 (2016). https://doi.org/10.1242/jcs.185025

    Article  Google Scholar 

  24. Elton, L., Carpentier, I., Staal, J., Driege, Y., Haegman, M., Beyaert, R.: MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-κB signaling. FEBS J. 283(3), 403–412 (2016). https://doi.org/10.1111/febs.13597

    Article  Google Scholar 

  25. Oikawa, D., Hatanaka, N., Suzuki, T., Tokunaga, F.: Cellular and mathematical analyses of LUBAC involvement in T cell receptor-mediated NF-κB activation pathway. Front. Immunol. 11, 601926 (2020). https://doi.org/10.3389/fimmu.2020.601926

    Article  Google Scholar 

  26. Tokunaga, F., Sakata, S., Saeki, Y., Satomi, Y., Kirisako, T., Kamei, K., et al.: Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11(2), 123–132 (2009). https://doi.org/10.1038/ncb1821

    Article  Google Scholar 

  27. Hatanaka, N., Seki, T., Inoue, J.I., Tero, A., Suzuki, T.: Critical roles of IκBα and RelA phosphorylation in transitional oscillation in NF-κB signaling module. J. Theor. Biol. 462, 479–489 (2019). https://doi.org/10.1016/j.jtbi.2018.11.023

    Article  MathSciNet  MATH  Google Scholar 

  28. Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D.: The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298(5596), 1241–1245 (2002). https://doi.org/10.1126/science.1071914

    Article  Google Scholar 

  29. Basak, S., Behar, M., Hoffmann, A.: Lessons from mathematically modeling the NF-κB pathway. Immunol. Rev. 246(1), 221–238 (2012). https://doi.org/10.1111/j.1600-065X.2011.01092.x

    Article  Google Scholar 

  30. Ohshima, D., Inoue, J., Ichikawa, K.: Roles of spatial parameters on the oscillation of nuclear NF-κB: computer simulations of a 3D spherical cell. PLoS ONE 7(10), e46911 (2012). https://doi.org/10.1371/journal.pone.0046911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuminori Tokunaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oikawa, D., Hatanaka, N., Suzuki, T., Tokunaga, F. (2021). Mathematical Simulation of Linear Ubiquitination in T Cell Receptor-Mediated NF-κB Activation Pathway. In: Suzuki, T., Poignard, C., Chaplain, M., Quaranta, V. (eds) Methods of Mathematical Oncology. MMDS 2020. Springer Proceedings in Mathematics & Statistics, vol 370. Springer, Singapore. https://doi.org/10.1007/978-981-16-4866-3_14

Download citation

Publish with us

Policies and ethics