Skip to main content

Basics of Water Electrolysis

  • Living reference work entry
  • First Online:
Handbook of Energy Materials

Abstract

Water electrolysis is one of the most promising methods for producing high-purity and environmentally friendly hydrogen from renewable energy sources since it generates only oxygen as a byproduct with zero carbon emission. Water reduction at the cathode to generate hydrogen (H2) and water oxidation at the anode to produce oxygen (O2) in water electrolysis are both kinetically slow, resulting in low energy efficiencies. Additionally, the O2 and H2 generated by applying overpotential to dissociate water molecule are immediately put to use in fuel cells and other industrial applications. However, due to cost constraints, overall water dissociation possesses nearly 4% of global industrial hydrogen based on electrolysis of water. In recent years, though the growing demand to produce green hydrogen has boosted interest in economical alkaline water electrolysis process, however exceptional progress has been observed for PEM water electrolysis for higher efficiency and fast reaction kinetic. This chapter covers the historical background of water electrolysis, principle, thermodynamics, various water electrolysis systems, their comparative performance, kinetic mechanism, challenges, and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AWE:

Alkaline water electrolysis

CAPEX:

Capital expenditures

DC:

Direct current

HER:

Hydrogen evolution reaction

HHV:

Higher heating value

LHV:

Lower heating value

MEA:

Membrane electrode assembly

OER:

Oxygen evolution reaction

OPEX:

Operating expenses

PEM:

Polymer electrolyte membrane

PEMWE:

Polymer electrolyte membrane water electrolysis

PFSA:

Perfluorosulfonic acid

PTL:

Porous transport layer

SOWE:

Solid-oxide water electrolysis

WE:

Working electrode

Δg:

Change in Gibbs free energy

ΔGf:

Gibbs free energy formation

ΔHf:

Enthalpy of formation

ΔSf:

Entropy change of the reaction

ɳ:

Overpotential

E:

Actual cell potential

Ea:

Activation energy

F:

Faraday’s constant

G:

Gibbs free energy

i:

Current

I cell :

Cell current

I stack :

Stack current

m :

Mass

M:

Molar mass

n:

Number of electron transfer

nc:

Number of cell

q :

Quantity of electricity

q:

Specific heat

Rcell:

Total electrical resistance of the cell

Sgen:

Entropy generation

T:

Temperature

Vcell:

Applied cell voltage

V cell :

Cell voltage

Veq:

Theoretical minimum potential

V stack :

Stack voltage

Vtn:

Thermoneutral voltage

w:

Specific work

References

  • L. Allidières, A. Brisse, P. Millet, S. Valentin, M. Zeller, On the ability of pem water electrolysers to provide power grid services. Int. J. Hydrog. Energy 44, 9690–9700 (2019)

    Article  Google Scholar 

  • S. Anantharaj et al., Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11, 744–771 (2018)

    Article  CAS  Google Scholar 

  • M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013)

    Article  CAS  Google Scholar 

  • A.N. Colli, H.H. Girault, A. Battistel, Non-precious electrodes for practical alkaline water electrolysis. Materials 12, 1336 (2019)

    Article  CAS  Google Scholar 

  • R. de Levie, The electrolysis of water. J. Electroanal. Chem. 476, 92–93 (1999)

    Article  Google Scholar 

  • I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40, 11094–11111 (2015)

    Article  CAS  Google Scholar 

  • I. Dincer, A.A. AlZahrani, in Comprehensive Energy Systems, ed. by I. Dincer, (Elsevier, Oxford, 2018), pp. 985–1025

    Chapter  Google Scholar 

  • S.D. Ebbesen, S.H. Jensen, A. Hauch, M.B. Mogensen, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem. Rev. 114, 10697–10734 (2014)

    Article  CAS  Google Scholar 

  • E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Cat. Sci. Technol. 4, 3800–3821 (2014)

    Article  CAS  Google Scholar 

  • A. Goñi-Urtiaga, D. Presvytes, K. Scott, Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review. Int. J. Hydrog. Energy 37, 3358–3372 (2012)

    Article  Google Scholar 

  • S.A. Grigoriev, V.N. Fateev, D.G. Bessarabov, P. Millet, Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrog. Energy 45, 26036–26058 (2020)

    Article  CAS  Google Scholar 

  • A. Hauch et al., Recent advances in solid oxide cell technology for electrolysis. Science 370, 6118 (2020)

    Article  Google Scholar 

  • H.-C. Hsu et al., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5, 262–268 (2013)

    Article  CAS  Google Scholar 

  • A. KeçebaÅŸ, M. Kayfeci, M. Bayat, in Solar Hydrogen Production, ed. by F. Calise, M.D. D’Accadia, M. Santarelli, A. Lanzini, D. Ferrero, (Academic Press, Amsterdam, 2019), pp. 299–317

    Chapter  Google Scholar 

  • M.A. Khan et al., Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 1, 483–530 (2018)

    Article  Google Scholar 

  • N.V. Kuleshov et al., Development and performances of a 0.5 kW high-pressure alkaline water electrolyser. Int. J. Hydrog. Energy 44, 29441–29449 (2019)

    Article  CAS  Google Scholar 

  • M.F. Lagadec, A. Grimaud, Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020)

    Article  CAS  Google Scholar 

  • R.L. LeRoy, Industrial water electrolysis: Present and future. Int. J. Hydrog. Energy 8, 401–417 (1983)

    Article  CAS  Google Scholar 

  • J. Li et al., Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting. J. Am. Chem. Soc. 137, 14305–14312 (2015)

    Article  CAS  Google Scholar 

  • Y. Luo, Y. Shi, N. Cai, in Hybrid Systems and Multi-energy Networks for the Future Energy Internet, ed. by Y. Luo, Y. Shi, N. Cai, (Academic Press, Amsterdam, 2021), pp. 41–84

    Chapter  Google Scholar 

  • T. Maeda, Y. Nagata, N. Endo, M. Ishida, Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer. J. Int. Counc Electr Eng 6, 78–83 (2016)

    Article  Google Scholar 

  • I.C. Man et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011)

    Article  CAS  Google Scholar 

  • P. Millet, S. Grigoriev, in Renewable Hydrogen Technologies, ed. by L.M. Gandía, G. Arzamendi, P.M. Diéguez, (Elsevier, Amsterdam, 2013), pp. 19–41

    Google Scholar 

  • I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017)

    Article  CAS  Google Scholar 

  • P. Sabhapathy et al., Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction. J. Mater. Chem. A 7, 7179–7185 (2019)

    Article  CAS  Google Scholar 

  • P. Sabhapathy et al., Electronic structure modulation of isolated Co-N4 electrocatalyst by sulfur for improved pH-universal hydrogen evolution reaction. Nano Energy 80, 105544 (2021)

    Article  CAS  Google Scholar 

  • R. Sharifian, R.M. Wagterveld, I.A. Digdaya, C. Xiang, D.A. Vermaas, Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021)

    Article  CAS  Google Scholar 

  • N.-T. Suen et al., Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017)

    Article  CAS  Google Scholar 

  • J. Suntivich, E.E. Perry, H.A. Gasteiger, Y. Shao-Horn, The influence of the cation on the oxygen reduction and evolution activities of oxide surfaces in alkaline electrolyte. Electrocatalysis 4, 49–55 (2013)

    Article  CAS  Google Scholar 

  • M.B. Syed, in Bioenergy Resources and Technologies, ed. by A.K. Azad, M.M.K. Khan, (Academic Press, Amsterdam, 2021), pp. 157–198

    Google Scholar 

  • S. Trasatti, Water electrolysis: Who first? J. Electroanal. Chem. 476, 90–91 (1999)

    Article  CAS  Google Scholar 

  • A. Villagra, P. Millet, An analysis of PEM water electrolysis cells operating at elevated current densities. Int. J. Hydrog. Energy 44, 9708–9717 (2019)

    Article  CAS  Google Scholar 

  • S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: Role of catalysts. Nano Convergence 8, 4 (2021)

    Article  CAS  Google Scholar 

  • J. Wei et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10, 75 (2018)

    Article  CAS  Google Scholar 

  • L. Xiao et al., First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ. Sci. 5, 7869–7871 (2012)

    Article  CAS  Google Scholar 

  • X. Yan et al., A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nat. Commun. 12, 4143 (2021)

    Article  CAS  Google Scholar 

  • B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018)

    Article  CAS  Google Scholar 

  • K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010)

    Article  CAS  Google Scholar 

  • H. Zhong et al., A covalent triazine-based framework consisting of donor–acceptor dyads for visible-light-driven photocatalytic CO2 reduction. ChemSusChem 12, 4493–4499 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Science and Engineering Research Board (SERB) core research grant (CRG/2021/003355) and Department of Science and Technology (DST) research grant India – Taiwan Programme of Cooperation in S&T (GITA/DST/TWN/P-103/2022), New Delhi, India. S.S. thanks the Department of Science and Technology (DST/INSPIRE/04/2018/003308), New Delhi, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Shown .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shown, I., Samireddi, S., Ravi, R. (2023). Basics of Water Electrolysis. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics