Skip to main content

Cancer Diagnosis and Prognosis Assistance Based on MCA

  • Chapter
  • First Online:
Multidisciplinary Computational Anatomy

Abstract

We are developing a detection/diagnosis system for lung cancer and chest diseases. These research use synchrotron radiation large-field microscopic CT images, high-definition CT images and pathology/clinical information, and long-term low-dose CT images and genetic information. We present high-performance computer-aided diagnosis system by analyzing the pathological condition from these multiscale image information. These results are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maitland ML, Schilsky RL. Clinical trials in the era of personalized oncology. CA Cancer J Clin. 2011;61:365–81.

    Article  Google Scholar 

  2. Aerts HJ. The potential of radiomic-based phenotyping in precision medicine. JAMA Oncol. 2016;2:1636–42.

    Article  Google Scholar 

  3. Kern SE. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 2012;72:6097–101.

    Article  CAS  Google Scholar 

  4. Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostic and diagnostic imaging. Eur J Radiol. 2009;70:232–41.

    Article  Google Scholar 

  5. Lambin P, Riso-Velazquez E, Leijenaar R, et al. Radiomics: extraction more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    Article  Google Scholar 

  6. Lambin P, van Stiphout RG, Starmans MH, et al. Predicting outcomes in radiation oncology-multifactorial decision support systems. Nat Rev Clin Oncol. 2013;10:27–40.

    Article  Google Scholar 

  7. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014 Jun 3;5:4006. https://doi.org/10.1038/ncomms5006.

    Article  CAS  PubMed  Google Scholar 

  8. Aerts HJ. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2:1636–42.

    Article  Google Scholar 

  9. Lambin P, Leijenaar RTH, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

    Article  Google Scholar 

  10. O'Connor JP, Aboagye EO, et al. Imaging biomarker road map for cancer studies. Nat Rev Clin Oncol. 2017;14:169–86.

    Article  CAS  Google Scholar 

  11. Itoh H, Nakatsu M, Yoxtheimer LM, et al. Structural basis for pulmonary functional imaging. Eur J Radiol. 2001;37:143–54.

    Article  CAS  Google Scholar 

  12. Itoh H, Nishino M, Hatabu H. Architecture of the lung morphology and function. J Thorac Imaging. 2004;19:221–7.

    Article  Google Scholar 

  13. Umetani K, Okamoto T, Saito K, Kawata Y, Niki N. 36M-pixel synchrotron radiation micro-CT for whole secondary pulmonary lobule visualization from a large human lung specimen. Eur J Radiol Open. 2020;7:100262.

    Google Scholar 

  14. Umetani K, Itoh H, Kawata Y, Niki N. Large lung specimen imaging full-field micro-CT using a high-megapixel single lens reflex camera and synchrotron radiation. Proc. International Workshop on Advanced Image Technology (IWAIT). 2018;22:1–4.

    Google Scholar 

  15. Frank H, Netter M. Atlas of human anatomy. 6th ed. Winsland House I, Singapore: Elsevier Pte. Ltd; 2015.

    Google Scholar 

  16. Niki N, Kwata Y, Suzuki H, et al. Cancer diagnosis and prognosis assistance based on multidisciplinary computational anatomy–progress overview FY2014-FY2018–. Proceedings of the fifth international symposium on the project “multidisciplinary computational anatomy”. 2019;107–114.

    Google Scholar 

  17. Maklad AS, Matsuhiro M, Suzuki H, et al. Blood vessel-based liver segmentation using the portal phase of an abdominal CT dataset. Med Phys. 2013;40(11):113501(17pp.). https://doi.org/10.1118/1.4823765.

    Article  PubMed  Google Scholar 

  18. Truong QA, Massaro JM, Rogers IS, et al. Reference values for Normal pulmonary artery dimensions by noncontrast cardiac computed tomography, the Framingham heart study. Circ Cardiovasc Imaging. 2012;5(1):147–54. https://doi.org/10.1161/CIRCIMAGING.111.968610.

    Article  PubMed  Google Scholar 

  19. Išgum I, Staring M, Rutten A, et al. Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging. 2009;28(7):1000–10. https://doi.org/10.1109/TMI.2008.2011480.

    Article  PubMed  Google Scholar 

  20. Kurugol S, Come CE, Diaz AA, et al. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions. Med Phys. 2015;42(9):5467–78. https://doi.org/10.1118/1.4924500.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xie Y, Liang M, Yankelevitz DF, et al. Automated measurement of pulmonary artery in low-dose non-contrast chest CT images. Proc SPIE Medical Imaging. 2015;9414:9414G-1–9. https://doi.org/10.1117/12.2081992.

    Article  Google Scholar 

  22. Gamechi ZS, Arias-Lorza AM, Pedersen JH, et al. Aorta and pulmonary artery segmentation using optimal surface graph cuts in non-contrast CT. Proc of SPIE Medical Imaging. 2018;105742D:1–7. https://doi.org/10.1117/12.2293748.

    Article  Google Scholar 

  23. Suzuki H, Kawata Y, Niki N, et al. Automated assessment of aortic and main pulmonary arterial diameters using model-based blood vessel segmentation for predicting chronic thromboembolic pulmonary hypertension in low-dose CT lung screening. Proc SPIE Medical Imaging. 2018;10575:105750X-1–6. https://doi.org/10.1117/12.2293295.

    Article  Google Scholar 

  24. Niki N, Kwata Y, Suzuki H, et al. Cancer diagnosis and prognosis assistance based on multidisciplinary computational anatomy–progress overview FY2016–Proceedings of the third international symposium on the project “multidisciplinary computational anatomy”. 2017;87–94.

    Google Scholar 

  25. Kamber M, Shinghal R, Collins DL, et al. Mode-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Trans Med Imaging. 1995;14(3):442–53. https://doi.org/10.1109/42.414608.

    Article  CAS  PubMed  Google Scholar 

  26. Nocedal J, Wright S. Quasi-Newton methods. In: Numerical Optimization. Germany, Berlin: Springer-Verlag; 1999. p. 192–218.

    Chapter  Google Scholar 

  27. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 2005;194(39–41):4135–95. https://doi.org/10.1016/j.cma.2004.10.008.

    Article  Google Scholar 

  28. Jaccard P. The distribution of flora in the alpine zone. New Phytol. 1912;11(2):37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x.

    Article  Google Scholar 

  29. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302. https://doi.org/10.2307/1932409.

    Article  Google Scholar 

  30. Kaneko M, Eguchi K, Ohmatsu H, et al. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology. 1996;201:798–802.

    Article  CAS  Google Scholar 

  31. National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. https://doi.org/10.1056/NEJMoa1102873.

    Article  Google Scholar 

  32. de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503–13. https://doi.org/10.1056/NEJMoa1911793.

    Article  PubMed  Google Scholar 

  33. Kanazawa K, Kawata Y, Niki N, et al. Computer-aided diagnosis for pulmonary nodules based on helical CT images. Comput Med Imaging Graph. 1998;22(2):157–67. https://doi.org/10.1016/s0895-6111(98)00017-2.

    Article  CAS  PubMed  Google Scholar 

  34. Kanazawa K, Kubo M, Niki N, et al. Computer aided screening system for lung cancer based on helical CT images. Proc. International Conference on Visualization in Biomedical Computing. 1996;223–228.

    Google Scholar 

  35. Kageyama T, Kawata Y, Niki N, et al. Differential diagnosis of pulmonary nodules using 3D CT images. Proc. SPIE Medical Imaging. 2020:113142J-1–6.

    Google Scholar 

  36. World Health Organization (WHO). World Health Statistics. 2008.

    Google Scholar 

  37. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: 2018 report. 2018.

    Google Scholar 

  38. Suzuki H, Matsuhiro M, Kawata Y, et al. Longitudinal follow-up study of smoking-induced emphysema progression in low-dose CT screening of lung cancer. Proc of SPIE Medical Imaging. 2014;9035:90352M-1–6. https://doi.org/10.1117/12.2044007.

    Article  Google Scholar 

  39. Suzuki H, Matsuhiro M, Kawata Y, et al. Association analysis of SNPs with CT image-based phenotype of emphysema progression in heavy smokers. Proc SPIE Medical Imaging. 2020;11314:113142D-1–7. https://doi.org/10.1117/12.2549431.

    Article  Google Scholar 

  40. Wilk JB, Shrine NRG, Loehr LR, et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med. 2012;186(7):622–32. https://doi.org/10.1164/rccm.201202-0366OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42(3):200–2. https://doi.org/10.1038/ng.535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim WJ, Oh YM, Lee JH, et al. Genetic variants in HHIP are associated with FEV1 in subjects with chronic obstructive pulmonary disease. Respirology. 2013;18(8):1202–9. https://doi.org/10.1111/resp.12139.

    Article  PubMed  Google Scholar 

  43. Zhou H, Yang J, Li D, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet. 2012;57:738–46. https://doi.org/10.1038/jhg.2012.104.

    Article  CAS  PubMed  Google Scholar 

  44. Chen W, Brehm JM, Manichaikul A, et al. A genome-wide association study of chronic obstructive pulmonary disease in Hispanics. Annals of American Thoracic Society. 2015;12(3):340–8. https://doi.org/10.1513/AnnalsATS.201408-380OC.

    Article  Google Scholar 

  45. Castaldi PJ, Cho MH, Zhou X, et al. Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum Mol Genet. 2014;24(4):1200–10. https://doi.org/10.1093/hmg/ddu525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wei R, Cao L, Pu H, et al. TERT polymorphism rs2736100-C is associated with EGFR mutation–positive non–small cell lung cancer. Clin Cancer Res. 2015;21(22):5173–80. https://doi.org/10.1158/1078-0432.CCR-15-0009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Broderick P, Webb E, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40(12):1407–9. https://doi.org/10.1038/ng.273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu KY, Muehlschlegel JD, Perry TE, et al. Common genetic variants on chromosome 9p21 predict perioperative myocardial injury after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg. 2010;139(2):483–488.e2. https://doi.org/10.1016/j.jtcvs.2009.06.032.

    Article  CAS  PubMed  Google Scholar 

  49. Timofeeva MN, Hung RJ, Rafnar T, et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet. 2012;21(22):4980–95. https://doi.org/10.1093/hmg/dds334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oguma T, Hirai T, Niimi A, et al. Limitations of airway dimension measurement on images obtained using multi-detector row computed tomography. PLoS One. 2013;8(22):e76381. https://doi.org/10.1371/journal.pone.0076381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tanabe N, Shima H, Sato S, et al. Direct evaluation of peripheral airways using ultra-high-resolution CT in chronic obstructive pulmonary disease. Eur J Radiol. 2019;120:108687. https://doi.org/10.1016/j.ejrad.2019.108687.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS Kakenhi 26108007. We would like to express our deep gratitude to all our collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Niki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niki, N., Kawata, Y., Suzuki, H., Matsuhiro, M., Saito, K. (2022). Cancer Diagnosis and Prognosis Assistance Based on MCA. In: Hashizume, M. (eds) Multidisciplinary Computational Anatomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4325-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4325-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4324-8

  • Online ISBN: 978-981-16-4325-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics