Skip to main content

Biomechanical Study on Injury and Treatment of Human Knee Joint

  • Chapter
  • First Online:
Biomechanics of Injury and Prevention
  • 477 Accesses

Abstract

The knee joint is one of the most important joints for weight bearing and exercising. The structure of knee is complicated, it is mainly composed of the patellofemoral and tibiofemoral joints. Articular cartilage, meniscus and ligaments together constitute the knee restraint system, which determine knee motion pattern and function in 6 degrees of freedom. However, knee joint injuries are frequent and have important links with biomechanical factors. Ligament tear is one of the typical acute injuries. Medial lateral ligament (MCL) and anterior cruciate ligament (ACL) are the most vulnerable ligaments in the knee joint. However, MCL can gradually recover through conservative treatment, while ACL needs to be treated by ligament reconstruction surgery. Biomechanics of surgery factors have a direct relationship with long-term post-operative outcome. Osteoarthritis is a typical chronic injury of the knee joint. Mechanical factors are interspersed in the occurrence, development and treatment of osteoarthritis. The purpose of this chapter is to introduce the biomechanics of knee joints and its application in injury prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schindler OS, Scott WN (2011) Basic kinematics and biomechanics of the patello-femoral joint. Part 1: The native patella. Acta Orthop Belg 77(4):421–431

    PubMed  Google Scholar 

  2. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173. https://doi.org/10.1016/j.jbiomech.2010.03.046

    Article  CAS  PubMed  Google Scholar 

  3. Jackson JL, O’Malley PG, Kroenke K (2003) Evaluation of acute knee pain in primary care. Ann Intern Med 139(7):575–588

    Article  Google Scholar 

  4. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK (2012) Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med. https://doi.org/10.1177/0363546512465167

  5. Verdonk PCM, Van Laer MEE, Verdonk R (2008) Meniscus replacement: from allograft to tissue engineering. Sports Orthop Traumatol 24(2):78–82. https://doi.org/10.1016/j.orthtr.2008.03.004

    Article  Google Scholar 

  6. Kannus P, Jarvinen M (1987) Conservatively treated tears of the anterior cruciate ligament. Long-term results. J Bone Joint Surg Am 69(7):1007–1012

    Article  CAS  Google Scholar 

  7. Sharma L, Eckstein F, Song J, Guermazi A, Prasad P, Kapoor D, Cahue S, Marshall M, Hudelmaier M, Dunlop D (2008) Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum 58(6):1716–1726. https://doi.org/10.1002/art.23462

    Article  PubMed  Google Scholar 

  8. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8(3):141–150

    Article  CAS  Google Scholar 

  9. Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30(8):914–918

    Article  CAS  Google Scholar 

  10. Fu FH, Bennett CH, Ma CB, Menetrey J, Lattermann C (2000) Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med 28(1):124–130

    Article  CAS  Google Scholar 

  11. Kondo E, Merican AM, Yasuda K, Amis AA (2011) Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med 39(2):279–288. https://doi.org/10.1177/0363546510392350

    Article  PubMed  Google Scholar 

  12. Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P, Dubrana F (2009) Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16(4):239–244. https://doi.org/10.1016/j.knee.2008.11.004

    Article  PubMed  Google Scholar 

  13. Wilson TC, Kantaras A, Atay A, Johnson DL (2004) Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 32(2):543–549. https://doi.org/10.1177/0363546504263151

    Article  PubMed  Google Scholar 

  14. Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, Altman RD, Christiansen C (2008) Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartil / OARS, Osteoarthr Res Soc 16(6):638–646

    Article  CAS  Google Scholar 

  15. Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G (2012) Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 83(3):315–323. https://doi.org/10.1016/j.bcp.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  16. Aglietti P, Insall JN, Walker PS, Trent P (1975) A new patella prosthesis. Design and application. Clin Orthop Relat Res 107:175–187

    Article  Google Scholar 

  17. Maquet PGJ (1983) Biomechanics of the knee: with application to the pathogenesis and the surgical treatment of osteoarthritis. Springer-Verlag, Berlin; New York

    Google Scholar 

  18. Huberti HH, Hayes WC (1984) Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am 66(5):715–724

    Article  CAS  Google Scholar 

  19. Insall J, Goldberg V, Salvati E (1972) Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res 88:67–69

    Article  CAS  Google Scholar 

  20. Bresler B, Frankel JP (1950) The forces and moment in the leg during level walking. Trans Am Soc Med Eng 72:27–36

    Google Scholar 

  21. Reilly DT, Martens M (1972) Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities. Acta Orthop Scand 43:126–137

    Article  CAS  Google Scholar 

  22. Winter DA (1983) Moments of force and mechanical power in jogging. J Biomech 16(1):91–97

    Article  CAS  Google Scholar 

  23. Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208. https://doi.org/10.1016/j.jbiomech.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  24. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech 38(2):269–276. https://doi.org/10.1016/j.jbiomech.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  25. Ramsey DK, Wretenberg PF (1999) Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech (Bristol, Avon) 14(9):595–611

    Article  CAS  Google Scholar 

  26. Kummer B (1987) Anatomy and biomechanics of the meniscus of the knee joint. Langenbecks Arch Chir 372:241–246

    Article  CAS  Google Scholar 

  27. Wilson DR, Feikes JD, O’Connor JJ (1998) Ligaments and articular contact guide passive knee flexion. J Biomech 31(12):1127–1136

    Article  CAS  Google Scholar 

  28. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666

    Article  Google Scholar 

  29. Woo SL, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am 69(8):1200–1211

    Article  CAS  Google Scholar 

  30. Birk DE, Mayne R (1997) Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol 72(4):352–361

    CAS  PubMed  Google Scholar 

  31. Woo SL, Newton PO, MacKenna DA, Lyon RM (1992) A comparative evaluation of the mechanical properties of the rabbit medial collateral and anterior cruciate ligaments. J Biomech 25(4):377–386

    Article  CAS  Google Scholar 

  32. Hart RA, Woo SL, Newton PO (1992) Ultrastructural morphometry of anterior cruciate and medial collateral ligaments: an experimental study in rabbits. J Orthop Res 10(1):96–103. https://doi.org/10.1002/jor.1100100112

    Article  CAS  PubMed  Google Scholar 

  33. Butler DL, Guan Y, Kay MD, Cummings JF, Feder SM, Levy MS (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25(5):511–518

    Article  CAS  Google Scholar 

  34. Harner CD, Xerogeanes JW, Livesay GA, Carlin GJ, Smith BA, Kusayama T, Kashiwaguchi S, Woo SL (1995) The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation. Am J Sports Med 23(6):736–745

    Article  CAS  Google Scholar 

  35. Woo SL, Abramowitch SD, Kilger R, Liang R (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39(1):1–20. https://doi.org/10.1016/j.jbiomech.2004.10.025

    Article  PubMed  Google Scholar 

  36. Boorman RS, Shrive NG, Frank CB (1998) Immobilization increases the vulnerability of rabbit medial collateral ligament autografts to creep. J Orthop Res 16(6):682–689. https://doi.org/10.1002/jor.1100160609

    Article  CAS  PubMed  Google Scholar 

  37. Giannotti BF, Rudy T, Graziano J (2006) The non-surgical management of isolated medial collateral ligament injuries of the knee. Sports Med Arthrosc 14(2):74–77. https://doi.org/10.1097/01.jsa.0000212307.54947.e4

    Article  PubMed  Google Scholar 

  38. Wang JH, Jia F, Gilbert TW, Woo SL (2003) Cell orientation determines the alignment of cell-produced collagenous matrix. J Biomech 36(1):97–102

    Article  Google Scholar 

  39. Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 21(3):289–305

    Article  CAS  Google Scholar 

  40. Yao J, Wen C, Cheung J, Zhang M, Hu Y, Yan C, Chiu K, Lu W, Fan Y (2012) Deterioration of stress distribution due to tunnel creation in single-bundle and double-bundle anterior cruciate ligament reconstructions. Ann Biomed Eng. https://doi.org/10.1007/s10439-012-0517-4

  41. Tsavalas N, Katonis P, Karantanas AH (2012) Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study. Eur Radiol 22(2):418–428. https://doi.org/10.1007/s00330-011-2275-3

    Article  PubMed  Google Scholar 

  42. Kim YM, Joo YB (2012) Patellofemoral osteoarthritis. Knee Surg Relat Res 24(4):193–200. https://doi.org/10.5792/ksrr.2012.24.4.193

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kalichman L, Zhang Y, Niu J, Goggins J, Gale D, Felson DT, Hunter D (2007) The association between patellar alignment and patellofemoral joint osteoarthritis features – an MRI study. Rheumatology (Oxford) 46(8):1303–1308

    Article  CAS  Google Scholar 

  44. Felson DT, Parkes MJ, Marjanovic EJ, Callaghan M, Gait A, Cootes T, Lunt M, Oldham J, Hutchinson CE (2012) Bone marrow lesions in knee osteoarthritis change in 6-12 weeks. Osteoarthr Cartil / OARS, Osteoarthr Res Soc 20(12):1514–1518. https://doi.org/10.1016/j.joca.2012.08.020

    Article  CAS  Google Scholar 

  45. Neogi T, Felson D, Niu J, Lynch J, Nevitt M, Guermazi A, Roemer F, Lewis CE, Wallace B, Zhang Y (2009) Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study. Arthritis Rheum 61(11):1539–1544

    Article  CAS  Google Scholar 

  46. Yu Z, Yao J, Wang X, Xin X, Zhang K, Cai H, Fan Y, Yang B (2019) Research methods and progress of patellofemoral joint kinematics: a review. J Healthc Eng 2019:9159267. https://doi.org/10.1155/2019/9159267

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vollnberg B, Koehlitz T, Jung T, Scheffler S, Hoburg A, Khandker D, Hamm B, Wiener E, Diederichs G (2012) Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol 22(11):2347–2356. https://doi.org/10.1007/s00330-012-2493-3

    Article  PubMed  Google Scholar 

  48. Yang B, Tan H, Yang L, Dai G, Guo B (2009) Correlating anatomy and congruence of the patellofemoral joint with cartilage lesions. Orthopedics 32(1):20

    CAS  PubMed  Google Scholar 

  49. Grelsamer RP, Dejour D, Gould J (2008) The pathophysiology of patellofemoral arthritis. Orthop Clin North Am 39(3):269–274. https://doi.org/10.1016/j.ocl.2008.03.001

    Article  PubMed  Google Scholar 

  50. Maenpaa H, Lehto MU (1997) Patellar dislocation. The long-term results of nonoperative management in 100 patients. Am J Sports Med 25(2):213–217

    Article  CAS  Google Scholar 

  51. Maenpaa H, Lehto MU (1997) Patellofemoral osteoarthritis after patellar dislocation. Clin Orthop Relat Res 339:156–162

    Article  Google Scholar 

  52. Wang CJ, Chan YS, Chen HH, Wu ST (2005) Factors affecting the outcome of distal realignment for patellofemoral disorders of the knee. Knee 12(3):195–200. https://doi.org/10.1016/j.knee.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  53. Henderson I, Francisco R (2005) Treatment outcome of extensor realignment for patellofemoral dysfunction. Knee 12(4):323–328. https://doi.org/10.1016/j.knee.2004.11.003

    Article  PubMed  Google Scholar 

  54. Belvedere C, Catani F, Ensini A, Moctezuma de la Barrera JL, Leardini A (2007) Patellar tracking during total knee arthroplasty: an in vitro feasibility study. Knee Surg Sports Traumatol Arthrosc 15(8):985–993. https://doi.org/10.1007/s00167-007-0320-1

    Article  CAS  PubMed  Google Scholar 

  55. Schindler OS (2012) Basic kinematics and biomechanics of the patellofemoral joint Part 2: the patella in total knee arthroplasty. Acta Orthop Belg 78(1):11–29

    PubMed  Google Scholar 

  56. Anglin C, Brimacombe JM, Hodgson AJ, Masri BA, Greidanus NV, Tonetti J, Wilson DR (2008) Determinants of patellar tracking in total knee arthroplasty. Clin Biomech (Bristol, Avon) 23(7):900–910. https://doi.org/10.1016/j.clinbiomech.2008.04.001

    Article  CAS  Google Scholar 

  57. Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10(3):184–193. https://doi.org/10.1007/s00167-001-0276-5

    Article  CAS  PubMed  Google Scholar 

  58. Lin YF, Jan MH, Lin DH, Cheng CK (2008) Different effects of femoral and tibial rotation on the different measurements of patella tilting: an axial computed tomography study. J Orthop Surg Res 3:5. https://doi.org/10.1186/1749-799X-3-5

    Article  PubMed  PubMed Central  Google Scholar 

  59. Incavo SJ, Coughlin KM, Pappas C, Beynnon BD (2003) Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment in total knee arthroplasty. J Arthroplasty 18(5):643–648

    Article  Google Scholar 

  60. Stoeckl B, Nogler M, Krismer M, Beimel C, de la Barrera JL, Kessler O (2006) Reliability of the transepicondylar axis as an anatomical landmark in total knee arthroplasty. J Arthroplasty 21(6):878–882

    Article  Google Scholar 

  61. Iranpour F, Merican AM, Baena FR, Cobb JP, Amis AA (2010) Patellofemoral joint kinematics: the circular path of the patella around the trochlear axis. J Orthop Res 28(5):589–594. https://doi.org/10.1002/jor.21051

    Article  PubMed  Google Scholar 

  62. Arendt E (2005) Anatomy and malalignment of the patellofemoral joint: its relation to patellofemoral arthrosis. Clin Orthop Relat Res 436:71–75

    Article  Google Scholar 

  63. DeFrate LE, Kim-Wang SY, Englander ZA, McNulty AL (2019) Osteoarthritis year in review 2018: mechanics. Osteoarthr Cartil 27(3):392–400. https://doi.org/10.1016/j.joca.2018.12.011

    Article  CAS  Google Scholar 

  64. Nickien M, Heuijerjans A, Ito K, van Donkelaar CC (2018) Comparison between in vitro and in vivo cartilage overloading studies based on a systematic literature review. J Orthop Res 36(8):2076–2086. https://doi.org/10.1002/jor.23910

    Article  PubMed Central  Google Scholar 

  65. Cai H, Bullock GS, Sanchez-Santos MT, Peirce N, Arden NK, Filbay SR (2019) Joint pain and osteoarthritis in former recreational and elite cricketers. BMC Musculoskelet Disord 20(1):596. https://doi.org/10.1186/s12891-019-2956-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hunter DJ, Bowes MA, Eaton CB, Holmes AP, Mann H, Kwoh CK, Maciewicz RA, Samuels J, Waterton JC (2010) Can cartilage loss be detected in knee osteoarthritis (Oa) patients with 3–6 months’ observation using advanced image analysis of 3 T MRI? Osteoarthr Cartil / OARS, Osteoarthr Res Soc 18(5):677–683

    Article  CAS  Google Scholar 

  67. Baker-LePain JC, Lane NE (2012) Role of bone architecture and anatomy in osteoarthritis. Bone 51(2):197–203. https://doi.org/10.1016/j.bone.2012.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  68. Garnero P, Peterfy C, Zaim S, Schoenharting M (2005) Bone marrow abnormalities on magnetic resonance imaging are associated with Type II collagen degradation in knee osteoarthritis: a three-month longitudinal study. Arthritis Rheum 52(9):2822–2829. https://doi.org/10.1002/art.21366

    Article  CAS  PubMed  Google Scholar 

  69. Boyd SK, Muller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res: Off J Am Soc Bone Miner Res 17(4):687–694. https://doi.org/10.1359/jbmr.2002.17.4.687

    Article  Google Scholar 

  70. Burr DB, Gallant MA (2012) Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8(11):665–673. https://doi.org/10.1038/nrrheum.2012.130

    Article  CAS  PubMed  Google Scholar 

  71. Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Cavadias S, Jacques C (2008) Mechanical stress and prostaglandin E2 synthesis in cartilage. Biorheology 45(3–4):301–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, J., Yang, B., Fan, Y. (2022). Biomechanical Study on Injury and Treatment of Human Knee Joint. In: Fan, Y., Wang, L. (eds) Biomechanics of Injury and Prevention. Springer, Singapore. https://doi.org/10.1007/978-981-16-4269-2_9

Download citation

Publish with us

Policies and ethics