Skip to main content

Resist Mechanism of Woodpecker’s Head and Neck Injury

  • Chapter
  • First Online:
Biomechanics of Injury and Prevention

Abstract

Head and neck injuries always cause severe morbidity and death of human. However, woodpecker can withstand fierce impact without suffering head/neck injuries while striking on trees with high acceleration and frequency. The mechanism of non-injury of woodpecker’s head and neck has attracted considerable attention of biologists, ornithologist and scientists in the fields of material science, medical engineering and mechanical engineering. Distinct impact-absorption system including head, beak, hyoid bone and neck muscles has been considered as the key to protect the woodpecker from injury according to previous studies. In this chapter, the resist mechanism of woodpecker’s head and neck injury were systematically studied and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Junge A, Langevoort G, Pipe A, Peytavin A, Wong F, Mountjoy M, Beltrami G, Terrell R, Holzgraefe M, Charles R, Dvorak J (2006) Injuries in team sport tournaments during the 2004 Olympic games. Am J Sports Med 34(4):565–576. https://doi.org/10.1177/0363546505281807

    Article  PubMed  Google Scholar 

  2. Li F, Li H, Xiao Z, Lu R, Zhang Z, Zhu H, Ren L (2017) A review on injury mechanism of intracerebral hemorrhage in vehicle accidents. Curr Pharm Des 23(15):2177–2192. https://doi.org/10.2174/1381612823666161118144829

    Article  CAS  PubMed  Google Scholar 

  3. Shi L, Han Y, Huang H, Li Q, Wang B, Mizuno K (2018) Analysis of pedestrian-to-ground impact injury risk in vehicle-to-pedestrian collisions based on rotation angles. J Saf Res 64:37–47. https://doi.org/10.1016/j.jsr.2017.12.004

    Article  Google Scholar 

  4. Barth JT, Macciocchi SN, Giordani B, Rimel R, Jane JA, Boll TJ (1983) Neuropsychological sequelae of minor head-injury. Neurosurgery 13(5):529–533. https://doi.org/10.1227/00006123-198311000-00008

    Article  CAS  PubMed  Google Scholar 

  5. Martin EM, Lu WC, Helmick K, French L, Warden DL (2008) Traumatic brain injuries sustained in the Afghanistan and Iraq wars. Am J Nurs 108(4):40–47. https://doi.org/10.1097/01.NAJ.0000315260.92070.3f

    Article  PubMed  Google Scholar 

  6. May PRA, Fuster JM, Haber J (1979) Woodpecker drilling behavior—endorsement of the rotational theory of impact brain injury. Arch Neurol 36(6):370–373. https://doi.org/10.1001/archneur.1979.00500420080011

    Article  CAS  PubMed  Google Scholar 

  7. Wang LZ, Cheung JTM, Pu F, Li DY, Zhang M, Fan YB (2011) Why do woodpeckers resist head impact injury: a biomechanical investigation. PLoS One 6(10):8. https://doi.org/10.1371/journal.pone.0026490

    Article  CAS  Google Scholar 

  8. Holbourn AHS (1944) Mechanics of head injuries. Lancet 243(6293):483. https://doi.org/10.1016/S0140-6736(00)58553-5

    Article  Google Scholar 

  9. Ommaya AK, Hirsch AE (1971) Tolerances for cerebral concussion from head impact and whiplash in primates. J Biomech 4(1):13. https://doi.org/10.1016/0021-9290(71)90011-x

    Article  CAS  PubMed  Google Scholar 

  10. May PRA, Fuster JM, Newman P, Hirschman A (1976) Woodpeckers and head-injury. Lancet 1(7973):1347–1348

    Article  CAS  Google Scholar 

  11. Bock WJ (1999) Functional and evolutionary morphology of woodpeckers. Ostrich 70(1):23–31. https://doi.org/10.1080/00306525.1999.9639746

    Article  Google Scholar 

  12. Schwab IR (2002) Cure for a headache. Br J Ophthalmol 86(8):843–843. https://doi.org/10.1136/bjo.86.8.843

    Article  PubMed Central  Google Scholar 

  13. Jung JY, Naleway SE, Yaraghi NA, Herrera S, Sherman VR, Bushong EA, Ellisman MH, Kisailus D, McKittrick J (2016) Structural analysis of the tongue and hyoid apparatus in a woodpecker. Acta Biomater 37:1–13. https://doi.org/10.1016/j.actbio.2016.03.030

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jung JY, Pissarenko A, Yaraghi NA, Naleway SE, Kisailus D, Meyers MA, McKittrick J (2018) A comparative analysis of the avian skull: woodpeckers and chickens. J Mech Behav Biomed Mater 84:273–280. https://doi.org/10.1016/j.jmbbm.2018.05.001

    Article  PubMed  Google Scholar 

  15. Wang L, Zhang H, Fan Y (2011) Comparative study of the mechanical properties, micro-structure, and composition of the cranial and beak bones of the great spotted woodpecker and the lark bird. Sci China-Life Sci 54(11):1036–1041. https://doi.org/10.1007/s11427-011-4242-2

    Article  PubMed  Google Scholar 

  16. Wang LZ, Niu XF, Ni YK, Xu P, Liu XY, Lu S, Zhang M, Fan YB (2013) Effect of microstructure of spongy bone in different parts of woodpecker’s skull on resistance to impact injury. J Nanomater 2013:6. https://doi.org/10.1155/2013/924564

    Article  CAS  Google Scholar 

  17. Ni YK, Wang LZ, Liu XY, Zhang HQ, Lin CY, Fan YB (2017) Micro-mechanical properties of different sites on woodpecker’s skull. Comput Methods Biomech Biomed Eng 20(14):1483–1493. https://doi.org/10.1080/10255842.2017.1378648

    Article  Google Scholar 

  18. Xu P, Ni Y, Liu J, Zhang W, Liu S, Wang L, Fan Y (2021) Biological analysis of woodpecker’s brain after impact experiments. Sci China-Technol Sci. https://doi.org/10.1007/s11431-020-1754-0

  19. Xu P, Cui Y, Ni Y, Fan Y, Wang L (2018) Analysis of the anatomical structure of woodpecker head and neck. Sci Sin Vitae 48(10):1084–1092. https://doi.org/10.1360/n052017-00293

    Article  Google Scholar 

  20. Nadis S (2006) Hard-hitting endeavour captures Ig Nobel. Nature 443(7112):616–617. https://doi.org/10.1038/443616b

    Article  CAS  PubMed  Google Scholar 

  21. Gibson LJ (2006) Woodpecker pecking: how woodpeckers avoid brain injury. J Zool 270(3):462–465. https://doi.org/10.1111/j.1469-7998.2006.00166.x

    Article  Google Scholar 

  22. Oda J, Sakamoto J, Sakano K (2006) Mechanical evaluation of the skeletal structure and tissue of the woodpecker and its shock absorbing system. JSME Int J Series A 49(3):390–396. https://doi.org/10.1299/jsmea.49.390

    Article  Google Scholar 

  23. Xu P, Ni Y, Lu S, Liu S, Zhou X, Fan Y (2021) The cushioning function of woodpecker’s jaw apparatus during the pecking process. Comput Methods Biomech Biomed Eng. https://doi.org/10.1080/10255842.2020.1838489

  24. Zhu Z, Wu C, Zhang W (2014) Frequency analysis and anti-shock mechanism of woodpecker’s head structure. J Bionic Eng 11(2):282–287. https://doi.org/10.1016/s1672-6529(14)60045-7

    Article  Google Scholar 

  25. Zhu Z, Zhang W, Wu C (2014) Energy conversion in woodpecker on successive peckings and its role on anti-shock protection of brain. Sci China-Technol Sci 57(7):1269–1275. https://doi.org/10.1007/s11431-014-5582-5

    Article  CAS  Google Scholar 

  26. Liu YZ, Qiu XM, Zhang X, Yu TX (2015) Response of woodpecker’s head during pecking process simulated by material point method. PLoS One 10(4). https://doi.org/10.1371/journal.pone.0122677

  27. Liu YZ, Qiu XM, Ma HL, Fu WW, Yu TX (2017) A study of woodpecker’s pecking process and the impact response of its brain. Int J Impact Eng 108:263–271. https://doi.org/10.1016/j.ijimpeng.2017.05.016

    Article  Google Scholar 

  28. Lee N, Horstemeyer MF, Prabhu R, Liao J, Rhee H, Hammi Y, Moser RD, Williams LN (2016) The geometric effects of a woodpecker’s hyoid apparatus for stress wave mitigation. Bioinspir Biomim 11(6). https://doi.org/10.1088/1748-3190/11/6/066004

  29. Jung J-Y, Pissarenko A, Trikanad AA, Restrepo D, Su FY, Marquez A, Gonzalez D, Naleway SE, Zavattieri P, McKittrick J (2019) A natural stress deflector on the head? Mechanical and functional evaluation of the woodpecker skull bones. Adv Theory Simul 2(4). https://doi.org/10.1002/adts.201800152

  30. Zhou P, Kong XQ, Wu CW, Chen Z (2009) The novel mechanical property of tongue of a woodpecker. J Bionic Eng 6(3):214–218. https://doi.org/10.1016/s1672-6529(08)60126-2

    Article  Google Scholar 

  31. Lee N, Horstemeyer MF, Rhee H, Nabors B, Liao J, Williams LN (2014) Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. J R Soc Interface 11(96). https://doi.org/10.1098/rsif.2014.0274

  32. Wang LZ, Lu S, Liu XY, Niu XF, Wang C, Ni YK, Zhao MY, Feng CL, Zhang M, Fan YB (2013) Biomechanism of impact resistance in the woodpecker’s head and its application. Sci China-Life Sci 56(8):715–719. https://doi.org/10.1007/s11427-013-4523-z

    Article  PubMed  Google Scholar 

  33. Baumel JJ (1993) Handbook of avian anatomy: nomina anatomica avium. Publications of Nuttall Ornithological Club, Cambridge

    Google Scholar 

  34. Kuroda N (1962) On the cervical muscles of birds. J Yamashina Inst Ornithol 3(3):189–211

    Article  Google Scholar 

  35. Zweers GA, Vanden Berge JC, Koppendraier R (1987) Avian cranio-cervical systems. Part I: anatomy of the cervical column in the chicken (Gallus gallus L.). Acta Morphol Neerl Scand 25(3):131–155

    CAS  PubMed  Google Scholar 

  36. Wedel MSR (2002) Osteological correlated of cervical musculature in Aves and Sauropoda (Dinosauria: Saurishia), with comments on ther cervical ribs of Apatosaurus. PaleoBios 22(3):1–6

    Google Scholar 

  37. Brault JR, Siegmund GP, Wheeler JB (2000) Cervical muscle response during whiplash: evidence of a lengthening muscle contraction. Clin Biomech 15(6):426–435. https://doi.org/10.1016/S0268-0033(99)00097-2

    Article  CAS  Google Scholar 

  38. McCully KK, Faulkner JA (1985) Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 59(1):119–126. https://doi.org/10.1152/jappl.1985.59.1.119

    Article  CAS  PubMed  Google Scholar 

  39. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 2008(6):655–658

    Google Scholar 

  40. Bock WJ (1964) Kinetics of the avian skull. J Morphol 114(1):1–41

    Article  Google Scholar 

  41. Jarvis E, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Martin Wild J, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6(2):151–159. https://doi.org/10.1038/nrn1606

    Article  CAS  PubMed  Google Scholar 

  42. Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43. https://doi.org/10.1016/j.expneurol.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  43. Signoretti S, Lazzarino G, Tavazzi B, Vagnozzi R (2011) The pathophysiology of concussion. PM R 3(10 SUPPL. 2):S359–S368. https://doi.org/10.1016/j.pmrj.2011.07.018

    Article  PubMed  Google Scholar 

  44. Wachter NJ, Augat P, Krischak GD, Mentzel M, Kinzl L, Claes L (2001) Prediction of cortical bone porosity in vitro by microcomputed tomography. Calcif Tissue Int 68(1):38–42. https://doi.org/10.1007/bf02685001

    Article  CAS  PubMed  Google Scholar 

  45. Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33(12):1575–1583. https://doi.org/10.1016/s0021-9290(00)00149-4

    Article  CAS  PubMed  Google Scholar 

  46. Gong H, Lv LW, Hong LW, Zhu D, Zhang XZ (2010) Regional variations in the anisotropic elastic properties of femoral trabecular bone. Bone 47(3):S399

    Google Scholar 

  47. Lebon M, Zazzo A, Reiche I (2014) Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeogr Palaeoclimatol Palaeoecol 416:110–119. https://doi.org/10.1016/j.palaeo.2014.08.001

    Article  Google Scholar 

  48. Stauber M, Müller R (2006) Volumetric spatial decomposition of trabecular bone into rods and plates—A new method for local bone morphometry. Bone 38(4):475–484. https://doi.org/10.1016/j.bone.2005.09.019

    Article  PubMed  Google Scholar 

  49. Stauber M, Rapillard L, Van Lenthe GH, Zysset P, Müller R (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res 21(4):586–595. https://doi.org/10.1359/jbmr.060102

    Article  PubMed  Google Scholar 

  50. Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE (2009) Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech 42(3):249–256. https://doi.org/10.1016/j.jbiomech.2008.10.035

    Article  PubMed  Google Scholar 

  51. Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21(2):307–314. https://doi.org/10.1359/jbmr.2006.21.2.307

    Article  PubMed  Google Scholar 

  52. Nawathe S, Nguyen BP, Barzanian N, Akhlaghpour H, Bouxsein ML, Keaveny TM (2015) Cortical and trabecular load sharing in the human femoral neck. J Biomech 48(5):816–822. https://doi.org/10.1016/j.jbiomech.2014.12.022

    Article  PubMed  Google Scholar 

  53. Peterson RE, Plunkett R (1975) Stress concentration factors. J Appl Mech 42(1):248

    Article  Google Scholar 

  54. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3. https://doi.org/10.1146/annurev.bioeng.3.1.307

  55. Nagaraja S, Couse TL, Guldberg RE (2005) Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech 38(4):707–716. https://doi.org/10.1016/j.jbiomech.2004.05.013

    Article  PubMed  Google Scholar 

  56. Cowin SC (1986) Wolff’s law of trabecular architecture at remodeling equilibrium. J Biomech Eng 108(1):83–88. https://doi.org/10.1115/1.3138584

    Article  CAS  PubMed  Google Scholar 

  57. Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy. J Biomech 20(8):785–787, 789–794. https://doi.org/10.1016/0021-9290(87)90058-3

    Article  CAS  PubMed  Google Scholar 

  58. Roesler H (1987) The history of some fundamental concepts in bone biomechanics. J Biomech 20(11–12):1025–1034. https://doi.org/10.1016/0021-9290(87)90020-0

    Article  CAS  PubMed  Google Scholar 

  59. Lanyon LE (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1 SUPPL):S37–S43. https://doi.org/10.1016/8756-3282(95)00378-9

    Article  Google Scholar 

  60. Goda I, Rahouadj R, Ganghoffer JF (2013) Size dependent static and dynamic behavior of trabecular bone based on micromechanical models of the trabecular architecture. Int J Eng Sci 72:53–77. https://doi.org/10.1016/j.ijengsci.2013.06.013

    Article  Google Scholar 

  61. Wang XD, Masilamani NS, Mabrey JD, Alder ME, Agrawal CM (1998) Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties. Bone 23(1):67–72. https://doi.org/10.1016/S8756-3282(98)00071-4

    Article  CAS  PubMed  Google Scholar 

  62. Heaney RP (2003) Is the paradigm shifting? Bone 33(4):457–465. https://doi.org/10.1016/S8756-3282(03)00236-9

    Article  PubMed  Google Scholar 

  63. Nag S, Banerjee R, Fraser HL (2007) A novel combinatorial approach for understanding microstructural evolution and its relationship to mechanical properties in metallic biomaterials. Acta Biomater 3(3 SPEC. ISS):369–376. https://doi.org/10.1016/j.actbio.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  64. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123. https://doi.org/10.1039/b402005g

    Article  CAS  Google Scholar 

  65. Giesen EBW, Ding M, Dalstra M, Van Eijden TMGJ (2001) Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 34(6):799–803. https://doi.org/10.1016/S0021-9290(01)00030-6

    Article  CAS  PubMed  Google Scholar 

  66. Linde F, Gothgen CB, Hvid I, Pongsoipetch B (1988) Mechanical properties of trabecular bone by a non-destructive compression testing approach. Eng Med 17(1):23–29. https://doi.org/10.1243/EMED_JOUR_1988_017_008_02

    Article  CAS  PubMed  Google Scholar 

  67. Stalnaker RL (1969) Mechanical properties of the head. West Virginia University, Morgantown

    Google Scholar 

  68. Hosey RR, Liu YK (1982) A homeomorphic finite element model of the human head and neck. In: Finite elements in biomechanics. John Wiley & Sons, pp 379–401

    Google Scholar 

  69. Ruan JS (1994) Impact Biomechanics of head injury by mathematical modelling. ProQuest Dissertations Publishing. Wayne State University

    Google Scholar 

  70. Lee MC, Haut RC (1989) Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J Biomech 22(6–7):537–542. https://doi.org/10.1016/0021-9290(89)90005-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Wang, L., Fan, Y. (2022). Resist Mechanism of Woodpecker’s Head and Neck Injury. In: Fan, Y., Wang, L. (eds) Biomechanics of Injury and Prevention. Springer, Singapore. https://doi.org/10.1007/978-981-16-4269-2_3

Download citation

Publish with us

Policies and ethics