Skip to main content

Astroblems in the Early Earth History: Precambrian Impact Structures of the Kola-Karelian Region (East Baltic Shield)

  • Chapter
  • First Online:
Geological and Geo-Environmental Processes on Earth

Abstract

Studying early Precambrian astroblems is complicated by their localization in structural and compositional complexes that underwent superimposed metamorphism and tectonic processing. Back in the 1980s, seven sites with occurrences of breccias and other rocks resembling impact structures were identified as potentially diamondiferous impact structures within the Karelian-Kola region. But at present, only two astroblems are known in the region: Janisjärvi of 725 ± 5 Ma and Suavjärvi of ~2400 Ma. In the Kola part, impact origin is assumed for two objects: the Javrozero circle structure in the Tanaelv belt and the Järva-varaka layered massif in the Monchegorsk ore area. The most promising structure to be an astrobleme with serious signs of impact origin is the Paleoproterozoic Järva-varaka massif. According to geological, petrochemical, and geochemical characteristics of rocks the Järva-varaka massif is most similar to the 1.85 Ga Sudbury structure (Canada), for which an impact origin was assumed. Shock metamorphism of the Järva-varaka massif was manifested in amorphization of zircon from the country rocks with formation of plagioclase and sillimanite glasses in inclusions, as well as planar deformations in quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelin YV, Semenov VS (1996) Nd and Sr isotopic geochemistry of mafic layered intrusions in the eastern Baltic Shield: implications for the evolution of Paleoproterozoic continental mafic magmas. Contrib Mineral Petrol 124:255–272

    Article  Google Scholar 

  • Astaf’ev BYu, Voinova OA, Lokhov KI, et al (2006) Age and genesis of early precambrian graphite mineralization of the lapland Belt (Kola Peninsula). Russ Geol 4:75–82 (in Russian)

    Google Scholar 

  • Cavosie AJ, Erickson TM, Timms NE (2015) Nanoscale records of ancient shock deformation: Reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater. Geology 43(4):315–318. https://doi.org/10.1130/G36489.1

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO et al (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:469–500

    Google Scholar 

  • Daly JS, Balagansky VV, Timmerman MJ (2006) European lithosphere dynamics. Geol Soc Lond Memoir 32:579–598

    Article  Google Scholar 

  • Davis DW (2008) Sub-million year age resolution of Precambrian igneousevents by thermal extraction (TE-TIMS) Pb dating of zircon: application to crystallization of the Sudbury impact melt sheet. Geology 36:383–386

    Article  Google Scholar 

  • Dawson P, Hargreave MM, Wilkinson GR (1971) The vibrational spectrum of zircon (ZrSiO4). J Phys C Solid St Phys 4:240–256

    Article  Google Scholar 

  • Earth Impact Database (2012) Earth Impact Database. https://www.passc/. Accessed 30 Mar 2012

  • Erickson TM, Pearce MA, Reddy SM et al (2017) Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon. Contrib Mineral Petrol 172(6). https://doi.org/10.1007/s00410-016-1322-0

  • Fel'dman VI, Granovsky LB, Korotaeva NN et al (1981) Meteorite crater Janis-järvi. In: Impactites. Moscow

    Google Scholar 

  • Freeman JJ, Wang A, Kuebler KE et al (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can Mineral 46:1477–1500. https://doi.org/10.3749/canmin.46.6.1477

    Article  Google Scholar 

  • French BM (2004) The importance of being cratered: the new role of meteorite impact as a normal geological process. Meteorit Planet Sci 39:169–197

    Article  Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth Sci Rev 98:123–170

    Article  Google Scholar 

  • Garde AA, McDonald I, Dyck B, Keulen N (2012) Searching for giant, ancient impact structures on Earth: the Mesoarchaean Maniitsoq structure, West Greenland. Earth Planet Sci Lett 337–338:197–210

    Article  Google Scholar 

  • Gibson RL, Reimold WU (1999) Significance of the Vredefort Dome for metamorphic-mineralization studies in the Witwatersrand Basin. Mineral Petrol 66:25–53

    Article  Google Scholar 

  • Gibson RL, Armstrong RA, Reimold WU (1997) The age and thermal evolution of the Vredefort impact structure: a single-grain U-Pb zircon study. Geochim Cosmochim Acta 61:1531–1540

    Article  Google Scholar 

  • Glikson AY (2013) The asteroid impact connection of planetary evolution. Springer-Briefs, Dordrecht

    Book  Google Scholar 

  • Glikson AY, Vickers J (2007) Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton Western Australia. Earth Planet Sci Lett 254:214–226

    Article  Google Scholar 

  • Glikson AY, Vickers J (2010) Asteroid impact connections of crustal evolution. Aust J Earth Sci 57:79–95

    Article  Google Scholar 

  • Glikson AY (2014) The archaean: geological and geochemical windows into the early earth. Springer

    Google Scholar 

  • Glukhovsky MZ, Kuzmin MI (2015) Extraterrestrial factors and their role in the tectonic evolution of the earth in early Precambrian. Tecton Geodyn 56:1225–1249

    Google Scholar 

  • Grieve RAF, Masaitis VL (1994) The economic potential of terrestrial impact craters. Int Geol Rev 36:105–151

    Article  Google Scholar 

  • Grieve RAF (1994) An impact model for the Sudbury structure. In: Lightfoot PC, Naldrett AJ (eds) Proceedings of the Sudbury-Noril'sk Symposium: Ontario Geological Survey Special, vol 5, pp 119–132

    Google Scholar 

  • Gucsik A, Koeberl C, Brandstätter F et al (2002) Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock-metamorphosed zircon. Earth Planet Sci Lett 202:495–509

    Article  Google Scholar 

  • Gucsik A, Zhang M, Koeberl C et al (2004) Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures. Mineral Mag 68:801–811

    Article  Google Scholar 

  • Hanski E, Walker RJ, Huhma H et al (2001) The Os and Nd isotopic systematics of the c. 2.44 Ga Akanvaara and Koitelainen mafic layered intrusions in northern Finland. Precam Res 109:73–102

    Article  Google Scholar 

  • Jones AP (2005) Meteorite impacts as triggers to large igneous provinces. Elements 1:277–281

    Article  Google Scholar 

  • Kaulina TV, Il’chenko VL, Lyalina LM et al (2015) Yavrozerskaya koltsevaya struktura—vosmozhnaya astroblema (The Yavrozersky circle structure—a possible astrobleme). Proc Fersman Sci Session GI KSC RAS 12:214–217 (in Russian)

    Google Scholar 

  • Kolesov BA, Geiger CA, Armbruster T (2001) The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy. Eur J Mineral 13:939–948

    Article  Google Scholar 

  • Lightfoot PC, Keys RR, Doherty W (2001) Chemical evolution and origin of nickel sulfide mineralization in the Sudbury igneous complex, Ontario, Canada. Econ Geol 96:1855–1875

    Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT (2014) Recently discovered 3.42-3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications. Geology 42:747–750

    Article  Google Scholar 

  • Masaitis VL, Danilin AN, Mashchak MC (1980) Geologiya astroblem (Geology of astroblems). Nedra, Leningrad (in Russian)

    Google Scholar 

  • Masaitis VL, Mashchak MS, Raikhlin AI et al (2018) Popigai impact structure and its diamond-bearing rocks. Springer

    Google Scholar 

  • Masaitis VL, Shadenkov EM (1980) Janis-jarvi astrobleme. In: Geology of astroblems, p 27–32. Leningrad (in Russian)

    Google Scholar 

  • Mashchak MS, Naumov MV (2012) The Suavjärvi impact structure NW Russia. Meteorit Planet Sci 47(10):1644–1658

    Article  Google Scholar 

  • McDonald FA, Bunring JA, Cina CE (2003) Yarrabubba—a large, deeply eroded impact structure in the Yilgarn Craton, Western Australia. Earth Planet Sci Lett 213:235–247

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geological process. Oxford University Press, New York

    Google Scholar 

  • Mernagh TP, Liu L (1991) Raman spectra from the Al2SiO5 polymorphs at high pressure and room temperature. Phys Chem Miner 18:126–130

    Article  Google Scholar 

  • Mitrofanov FP, Smolkin VF (eds) (2004) Layered intrusions of the Monchegorsk ore region: petrology, mineralization, isotopy, deep structure. KSC RAS, Apatity

    Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry, and exploration. Springer

    Book  Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7:471–478

    Article  Google Scholar 

  • Nasdala L, Zhang M, Kempe U et al (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:427–467

    Google Scholar 

  • Naumov MV (2002) Impact-generated hydrothermal systems: data from Popigai, Kara, and Puchezh-Katunki impact structures. In: Plado J, Pesonen LJ (eds) Impacts in precambrian shields. Springer-Verlag, Berlin Heidelberg New York, pp 117–171

    Chapter  Google Scholar 

  • Naumov MV (2005) Principle features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence. Geofluids 3:165–184

    Article  Google Scholar 

  • Naumov MV (2010) Impact-generated sulfide ore from the Suavjärvi impact structure, Russian Karelia (abstract # 1117). In: 41st Lunarand Planetary Science Conference, CD-ROM

    Google Scholar 

  • Nerovich LI, Bayanova TB, Kunakkuzin EL et al (2015) Novye rezultaty geologo-petrograficheskogo I geochimicheskigo izucheniya rassloennogo massiva Yarva-varaka, Monchegorsky rudnyi raion (New results of geological-petrographic and geochemical study of the layered massif of Järva-varaka, Monchegorsk ore area). Proc Fersman Sci Session GI KSC RAS 12:141–146 (in Russian)

    Google Scholar 

  • Nerovich LI, Bayanova TB, Kunakkuzin EL et al (2019) O problemah genezica massiva Yarva-varaka, Monchegorsky rudnyi raion (On the Genesis Problem of the Järva-varaka Massif, Monchegorsk Ore Area). Proc Fersman Sci Session GI KSC RAS 16:413–417. https://doi.org/10.31241/FNS.2019.16.083 (in Russian)

  • Nerovich LI., Il’chenko VL, Kaulina NV et al (2020) Signs of impact origin of the Paleoproterozoic layered Järva-varaka massif, Kola region. Proc Fersman Sci Session GI KSC RAS 17:384–389 (in Russian). https://doi.org/10.31241/FNS.2020.17.073

  • Presser V, Glotzbach C (2009) Metamictization in zircon: Raman investigation following a Rietveld approach. Part II: sampling depth implication and experimental data. J Raman Spectrosc 40:499–508

    Article  Google Scholar 

  • Puchtel IS, Haase KM, Hofmann AW et al (1997) Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochim Cosmochim Acta 61:1205–1222

    Article  Google Scholar 

  • Reimold WU, Leroux H, Gibson RL (2002) Shocked and thermallymetamorphosed zircon from the Vredefort impact structure, South Africa. Eur J Mineral 14:859–868

    Article  Google Scholar 

  • Reimold WU, Koeberl C, Gibson RL et al (2004) Economic mineral deposits in impact structures: a review. In: Koeberl C, Henkel H (eds) Impact tectonics. Springer-Verlag, Berlin Heidelberg New York, pp 479–552

    Google Scholar 

  • Reimold WU, Koeberl C (2008) Catastrophes, extinctions, and evolution: 50 years of impact cratering studies. In: Golden jubilee memoir of the geological society of India, vol 66, p 69–110

    Google Scholar 

  • Rodionov NV, Belyatsky BV, Antonov AV et al (2012) Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline-ultramafic complex, Kola Peninsula Russia. Gondwana Res 21(4):728–744. https://doi.org/10.1016/j.gr.2011.10.005

    Article  Google Scholar 

  • Smolkin VF, Fedotov ZA, Neradovsky YN et al (2004) Layered intrusions of the Monchegorsk ore region: petrology, mineralization, isotope features and deep structure. Kola Science Centre RAS, Apatity (in Russian)

    Google Scholar 

  • Stoffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: 1 Basic observation and theory. Meteoritics 29:155–181

    Article  Google Scholar 

  • Stöffler D, Ostertag R, Jammes C, Pfannschmidt G (1986) Shock metamorphism and petrology of the Shergotty achondrite. Geochim Cosmochim Acta 50:889–903

    Google Scholar 

  • Titorenkova R, Mihailova B, Konstantinov L (2006) Raman spectroscopic study of variably recrystallized metamict zircon from amphibolite-facies metagranites, Serbo-Macedonian massif, Bulgaria. Can Mineral 44:1357–1366

    Article  Google Scholar 

  • VanWestrenen W, Frank MR, Hanchar JM et al (2004) In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition. Am Mineral 89:197–203

    Article  Google Scholar 

  • Vishnevsky SA, Pal’chik NA, Moroz TN, et al (2002) Shock Metamorphism of Carbonaceous Matter in Impactites of the Janisjärvi Astrobleme Karelia. Dokl Earth Sci 387A(9):1024–1027

    Google Scholar 

  • Vishnevsky SA, Palchik NA (2002) Carbon matter in impactites of the Janisjärvi astrobleme, Russia: high-pressure shock transformations (abs.1676). In: LPSC XXXIII, 11–15 March, 2002, Houston, USA, LPI (CD-ROM)

    Google Scholar 

  • Walker RJ, Morgan JW, Hanski EJ et al (1997) Re-Os systematics of early ptoterozoic ferropicrites, Pechenga complex, northwestern Russia: evidence for ancient Os-enriched plumes. Geochim Cosmochim Acta 61(15):3145–3160

    Article  Google Scholar 

  • Wittmann A, Kenkmann T, Schmitt RT et al (2006) Shock-metamorphosed zircon in terrestrial impact craters. Meteorit Planet Sci 41(3):433–454

    Article  Google Scholar 

  • Yang S-H, Hanski E, Li C et al (2016) Mantle source of the 2.44–2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions. Miner Deposita 51:1055–1073. https://doi.org/10.1007/s00126-016-0673-9

    Article  Google Scholar 

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys 12:1915–1925

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Bocharov V. and Shilovsky V. for Raman and EBSD study of zircon, to for Rodionov N. and L’vov P. for SHRIMP-II zircon and baddeleyite dating, to Naumov M., Vinogradova N., Konstantinova L., and Sosnovskaya M. for their help during field trip and to the two anonymous reviewers for all the constructive comments they provided to improve this manuscript. The work was performed in the framework of the State Contract No. 0226-2019-0052 of GI KSC RAS and conducted using an equipment of the "Geomodel" and “X-rays diffraction methods” resource centers of the St. Petersburg State University Science Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Kaulina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaulina, T.V. et al. (2021). Astroblems in the Early Earth History: Precambrian Impact Structures of the Kola-Karelian Region (East Baltic Shield). In: Shandilya, A.K., Singh, V.K., Bhatt, S.C., Dubey, C.S. (eds) Geological and Geo-Environmental Processes on Earth. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-16-4122-0_3

Download citation

Publish with us

Policies and ethics