
Chapter 6
Information Processing on Compressed
Data

Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto

Abstract We survey our recent work related to information processing on com-
pressed strings. Note that a “string” here contains any fixed-length sequence of sym-
bols and therefore includes not only ordinary text but also a wide range of data,
such as pixel sequences and time-series data. Over the past two decades, a variety
of algorithms and their applications have been proposed for compressed informa-
tion processing. In this survey, wemainly focus on two problems: recompression and
privacy-preserving computation over compressed strings. Recompression is a frame-
work inwhich algorithms transformagiven compresseddata into another compressed
format without decompression. Recent studies have shown that a higher compression
ratio can be achieved at lower cost by using an appropriate recompression algorithm
such as preprocessing. Furthermore, various privacy-preserving computation mod-
els have been proposed for information retrieval, similarity computation, and pattern
mining.

6.1 Restructuring Compressed Data

Data compression plays a central role in the efficient transmission and storage of
data. Recent developments have also shown that data compression is a useful tool for
processing highly repetitive data which contains long common substrings. Typical
examples of highly repetitive data include collections of genomes taken from simi-
lar species and versioned documents. Popular compressors for highly repetitive data
includeLempel-Ziv 77 (LZ77) [40], run-length encodedBurrows-Wheeler transform
(RLBWT) [8], and grammar-based compression [34]. For each of these compression
methods, researchers have developed techniques for operating on compressed data.
For example, there are indexes based on LZ77 [37], RLBWT [17], and grammar-
based compression [11]. Although recent studies [33, 36, 45] have investigated the
fundamentals of these techniques and obtained a unified view of the compressibility
of highly repetitive data, each compressed format still has pros and cons that cannot
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be ignored in practice. LZ77 usually achieves better compression than other com-
pression methods, the index based on RLBWT (called r -index) supports very fast
pattern search, and grammar-based compression is easy to handle in both theory and
practice. Thus, in order to take advantage of the virtues of the different compressed
formats, it is useful to have algorithms that can efficiently convert one compressed
format to another. In this section, we present some examples of these algorithms.

6.1.1 Preliminaries

Let � be an ordered alphabet, that is, a set of characters that has a total order. A
string over � is a sequence of characters chosen from �. The length of a string w

is denoted by |w|. For any 1 ≤ i ≤ |w|, the i th character of w is denoted by w[i].
The substring of w starting at i and ending at j is denoted by w[i... j]. The substring
w[i... j] is called a prefix (resp., suffix) if i = 1 (resp., j = |w|). The reversed string
of w is denoted by wR , namely, wR = w[|w|]w[|w| − 1] · · · w[2]w[1].

Let T be a string of length n over�. We consider the following three compression
schemes for T .

LZ77: LZ77 is characterized by greedy factorization T = f1 f2 · · · fz of T. The
i th factor fi is a single character if the character does not appear in f1 f2 · · · fi−1, and
otherwise, the longest substring such that there is another occurrence si of fi with
si ≤ | f1 f2 · · · fi−1|. The position si is called the reference position of the i th LZ77
factor fi . We can store T in O(z)-space because each factor fi (in the second case)
can be replaced with a pair (si , | fi |).

BWT, RLBWT: For simplicity, we assume thatT is extended by the endmarker $,
which is a special character not in� and lexicographically smaller than any character
in �, that is, T[n + 1] = $. The Burrows-Wheeler transform [8] is a permutation L
of characters in T[1 . . . n + 1] obtained as follows: L[i] is the character preceding
the lexicographically i th smallest suffix among all non-empty suffixes of T with the
exception that L[i] = $ when the i th smallest suffix is T itself (and therefore has
no preceding character). The resulting string L can be interpreted as a sequence
obtained by sorting characters in T according to their context (succeeding suffixes).
Since characters sharing similar context tend to be identical, L is well compressible
by run-length encoding. The run-length encoded BWT is called RLBWT.

Let SA[1 . . . n + 1] denote the suffix array of T [1 . . . n + 1], where SA[i] is the
starting position of the lexicographically i th smallest suffix. We consider SA as
a mapping from BWT position to text position and say that the BWT position i
corresponds to the text position SA[i]. One crucial operation on the BWT string
L is the so-called LF mapping that maps a BWT position i to the BWT position
corresponding to text position SA[i] − 1. LF mapping can be implemented by a
rank data structure on L that returns the number of occurrences of a character c in
L[1 . . . i] for any character c and BWT position i .

By using LF mapping, we can also support backward search. For any string w

that appears in T, there is a unique maximal interval [b . . . e] such that the lexico-
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graphically i th suffix is prefixed by w iff i ∈ [b . . . e]. Note that e − b + 1 is the
number of occurrences of w in T and the text positions corresponding to these posi-
tions represent the occurrences of w. A single step of the backward search computes
the cw-interval from the w-interval by using the same mechanism as LF mapping,
where c is a character. The index based on backward search on BWT is known as the
FM-index [14]. Although it was previously known that the occurrences of a pattern
can be counted by a backward search implemented in RLBWT space [41], it was
recently reported that RLBWT can be augmented with an O(r)-space data structure
to report all the occurrences of the pattern efficiently. The index based on RLBWT
is called the r -index [17].

Grammar compression: Grammar compression is a general framework of data
compression in which a context-free grammar (CFG) S = (�,V,D) that derives a
single string T is considered to be a compressed representation of T, where � is the
set of characters (terminals), V is the set of variables (non-terminals),D is the set of
deterministic production rules whose right-hand sides are strings over (V ∪ �), and
the last variable derives T.1 The compressed size of S is expressed by the sum of
the lengths of right-hand sides of the production rules in S. We consider run-length
encoding right-hand sides of CFGs, and call such CFGs run-length encoded CFGs
(RLCFGs). The compressed size of an RLCFG is expressed by the sum of run-length
encoded sizes of right-hand sides of the production rules.

Algorithm 1: Supposing that we have parsed suffix T[p + 1 . . .], compute the
length of the next LZ77 factor ending at p.

1 p′ ← p;
2 w ← ε;
3 c ← T[p′];
4 while cw-interval contains a text position larger than p′ do
5 p′ ← p′ − 1;
6 w ← cw;
7 c ← T[p′];
8 return min(1, p′ − p);

6.1.2 RLBWT to LZ77

Algorithms to compute LZ77 from RLBWT are considered in [3, 32, 46, 47,
49]. An essential task when computing LZ77 is to search for the longest pre-
fix of T[| f1 f2 · · · fi−1| + 1 · · · ] that occurs before and compute an occurrence
si ≤ | f1 f2 · · · fi−1| of fi . The basic idea is to use the backward search on RLBWT of
T R to perform this task. One difficulty is ignoring the BWT positions that correspond

1 We treat the last variable as the starting variable.
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to the suffixes starting after | f1 f2 · · · fi−1| during the backward search. In [49], it is
shown that keeping at most 2r BWT positions is sufficient to compute the longest
prefix and a reference position for the LZ77 factor. This subsection gives a brief
review of this idea.

For the sake of this explanation, consider the case of LZ77 parsing from right to
left (i.e., we conceptually compute the LZ77 factorization for T R) so that backward
search on T (instead of the reversed one) can be used. Supposing that we have parsed
suffix T[p + 1 . . .], Algorithm 1 shows how to compute the length of the next factor
ending at p. To check whether the cw-interval contains a text position larger than
p′, we partition SA into r subintervals and maintain at most two positions for each
subinterval, which is the LF-mapped interval of a run of L . Suppose that the cw-
interval [b . . . e] is non-empty and [b . . . e] is covered by consecutive subintervals
[b1 . . . e1], [b2 . . . e2], . . . , [bk . . . ek] with minimal integer k, that is, b1 ≤ b < e1 +
1 = b2 < e2 + 1 = b3 < · · · < ek−1 + 1 = bk ≤ e ≤ ek . If k = 1, the characters of
L in w-interval consist of a single character c and all positions in w-interval are LF-
mapped to cw-interval. Therefore, cw-interval contains a text position larger than p′
iff w-interval satisfies the condition in the previous step. For the case of k > 1, we
mark the closest positions from the boundaries of subintervals that correspond to text
positions larger than p′. Using this information, we can check whether SA[b1 . . . e1]
and/or SA[bk . . . ek] contain a text position larger than p′. We also maintain the data
structure to check whether a subinterval in [b2 . . . e2], . . . , [bk−1 . . . ek−1] contains
a text position larger than p′, and if so we compute which interval contains that
position.

In thisway,we can compute the lengths of LZ77 factors. The reference position for
each LZ77 factor can also be computed by maintaining text positions corresponding
to the marked positions in each subinterval. The data structures use only O(r)words
of space.

In [46], the data structures are tuned to improve the time complexity. In [47], a fast
implementation for the backward search in RLBWT space was proposed and applied
to the above-mentioned algorithm. In [3], an online construction of r -index was
proposed and the technique was extended to an online LZ77 factorization algorithm
in RLBWT space. In [32], a different approach to converting RLBWT to LZ77 was
proposed.

6.1.3 Recompression on Grammar Compression

Given that there are a number of CFGs with different properties for representing
strings, we may want to transform one CFG to another without explicitly decom-
pressing the text. In this subsection, we introduce a technique called recompression
which has proven to be a powerful tool in problems related to grammar compres-
sion [26–28, 31] and word equations [29, 30].
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In [27], Jeż proposed an algorithm TtoG for computing an RLCFG of T in O(N )

time. Let TtoG(T) denote the RLCFG of T produced by TtoG. We use the term
letters for characters and variables introduced by TtoG. A run is called a block in
this subsection. TtoG consists of two different types of compression, namely, block
compression (BComp) and pair compression (PComp).

• BComp: Given a stringw over� = [1 . . . |w|],BComp compressesw by replac-
ing all blocks of length ≥ 2 with fresh letters. Note that BComp eliminates all
blocks of length ≥ 2 in w.

• PComp: Given a string w over � = [1 . . . |w|] that contains no block of length
≥ 2, PComp compresses w by replacing all pairs from �́�̀ with fresh letters,
where (�́, �̀) is a partition of �, that is, � = �́ ∪ �̀ and �́ ∩ �̀ = ∅. Given the
frequency table of pairs, we can deterministically compute a partition of � by
which at least (|w| − 1)/4 occurrences of pairs are replaced.

TtoG compresses T0 = T by applying BComp and PComp in turns until the string
is shrunk down to a single letter. Because PComp compresses a given string by a
constant factor of 3/4, the height of TtoG(T) is O(lg N ).

TtoG performs level-by-level transformation of T0 into strings T1,T2, . . . ,Tĥ ,
where |Tĥ | = 1. If h is even, the transformation from Th to Th+1 is performed by
BComp, and production rules of the form c → c̈d are introduced. If h is odd, the
transformation from Th to Th+1 is performed by PComp, and production rules of
the form c → ćc̀ are introduced. Let �h be the set of letters appearing in Th .

The advantage of TtoG is that it can be simulated on S = S0 = (�0,V,D0)

without decompression. We consider the level-by-level transformation of S0 into
CFGs S1 = (�1,V,D1),S2 = (�2,V,D2), . . . ,Sĥ = (�ĥ,V,Dĥ), where each Sh

generates Th . More specifically, the compression from Th to Th+1 is simulated on Sh .
We can correctly compute the letters introduced in each level h + 1 while modifying
Sh into Sh+1; hence, we get all the letters of TtoG(T) in the end. We note that
new “variables” are never introduced and modifications are made by rewriting the
right-hand sides of the original variables.

WenowshowhowPComp is performedonSh for oddh. That is,we computeSh+1

from Sh . Note that any occurrence i of a pair ćc̀ in Th can be uniquely associated with
a variable X that is the label of the lowest node covering the interval [i . . . i + 1] in
the derivation tree of Sh (recall that Sh generates Th). We can compute the frequency
table of pairs by counting pairs associated with X in Dh(X) and multiplying it by
the number of occurrences of X in the derivation tree of Sh . The frequency table is
used to compute a partition of �h , which determines the pairs to be replaced. A pair
appears explicitly in right-hand sides or crosses the boundaries of variables. We can
modify Sh so that all the crossing occurrences to be replaced appear explicitly in
some right-hand side, then replace the explicit occurrences to get Sh+1. In a similar
way, BComp can also be performed on Sh for odd h.

In [23], it is shown that TtoG(T) can be used to answer the longest common
extension (LCE) queries and the transformation from arbitrary CFG S to TtoG(T)

is a key for efficient construction algorithms of LCE data structures in grammar
compressed space. In [53], the recompression technique is modified to transform
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arbitrary CFG S into the CFG obtained by the RePair algorithm [38]. RePair is
known to achieve the best compression performance in practice and there are many
studies on computing RePair in small space. Using online grammar compression
algorithms, such as [43, 57], the algorithm in [53] leads to the first RePair algorithm
working in compressed space.

6.2 Privacy-Preserving Similarity Computation

6.2.1 Related Work

This section reviews recent results in privacy-preserving information retrieval over
strings recently presented in [59]. As the number of strings containing personal
information has increased, privacy-preserving computation has become increasingly
important. Secure computation based on public-key encryption is one of the great
accomplishments of modern cryptography because it allows untrusted parties to
compute a function based on their private inputs, while revealing nothing but the
result.

Rapid progress in gene sequencing technology has expanded the range of appli-
cations of edit distance to include personalized genomic medicine, diagnosis of
diseases, and preventive treatment (e.g., see [1]). However, because the genome of
a person is ultimately personal information that uniquely identifies the owner, the
parties involved should not share personal genomic data in plaintext. We therefore
consider a secure two-party model for edit distance computation: Two untrusted par-
ties generating their own public and private keys have strings x and y, respectively,
and they want to jointly compute f (x, y) for a given metric f without revealing
anything about their individual strings.

Homomorphic encryption (HE) is an emerging technique for such secure multi-
party computation. HE is a kind of public-key encryption between two parties Alice
and Bob where Bob wants to send a secret message to Alice. In this model, Bob
generates his secret key and public key prior to communication, say sk and pk, where
pk is known to everyone. Alice then sends the encrypted message E(m, pk) to Bob
and he decrypts m by using his secret key sk using the property E(E(m, pk), sk) =
m. If it is not necessary to specify the owner of pk and sk, we simply write E(m)

for simplicity.
A public-key encryption E() has the additive homomorphic property if we can

obtain E(m + n) from E(m) and E(n) without decryption, and the multiplicative
property is similarly defined. If E() is additive, Alice can obtain the summation of
many people’s secret numbers without revealing their private numbers.

The first public-key encryption algorithm RSA [51] is multiplicative because it
has the following property: Let (e, n) be a public key and (d, n) be a secret key,
respectively, where e, d, n are integers. For a message m, its encryption is computed
by c = (me mod n) and is decrypted by cd = med ≡ m mod n. We can easily
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check the multiplicative property (me
1 mod n) · (me

2 mod n) = (m1m2)
e mod n.

The Paillier encryption system [48] was the first system to have the additive property.
This means that parties can jointly compute the encrypted value E(x + y) directly
based on only two encrypted integers E(x) and E(y).

By taking advantage of the homomorphic property, researchers have proposedHE-
based privacy-preserving protocols for computing the Levenshtein distance d(x, y).
For example, Inan et al. [25] designed a three-party protocol where two parties
securely compute d(x, y) by enlisting the help of a reliable third party. Rane and
Sun [50] then improved this three-party protocol to develop the first two-party pro-
tocol.

In this review, we focus on an extended Levenshtein distance called the edit
distance with moves (EDM) which allows any substring to be moved with unit cost
in addition to the standard operations of inserting, deleting, and replacing a character.
Based on the EDM, we can find a set of approximately maximal common substrings
appearing in two strings, which can be used to detect plagiarism in documents or long
repeated segments in DNA sequences. As an example, consider two unambiguously
similar strings x = aNbN and y = bNaN , which can be transformed into each other
by a single move. While the exact EDM is simply EDM(x, y) = 1, the Levenshtein
distance has the undesirable value d(x, y) = 2N . The n-gram distance is preferable
to the Levenshtein distance in this case, but it requires huge time/space complexity
depending on N .

Although computation of EDM(x, y) is NP-hard [55], Cormode andMuthukrish-
nan [12]were able to find an almost linear-time approximation algorithm.Many tech-
niques have been proposed for computing theEDM.For example,Ganczorz et al. [18]
proposed a lightweight probabilistic algorithm. In these algorithms, each string x is
transformed into a characteristic vector vx consisting of nonnegative integers repre-
senting the frequencies of particular substrings of x . For two strings x and y, we then
have the approximate distance guaranteeing L1(vx , vy) = O(lg∗ N lg N )EDM(x, y)
for N = |x | + |y|.

InAppendixAof [15], there is a subtle flaw in theESP algorithm [12] that achieves
this O(lg∗ N lg N ) bound. However, this flaw can be remedied by an alternative
algorithm called HSP [15]. Because lg∗ N increases extremely slowly,2 we employ
L1(vx , vy) as a reasonable approximation to EDM(x, y).

Basically, the ESP tree is a special type of grammar compression referred to in the
previous section where the length of the right-hand side of any production rule is just
two or three. Therefore, EDM(x, y) is approximated by the compressed expressions
for the strings x and y. The relationship between grammar compression (including
ESP) and its applications has been widely investigated in the past two decades (see,
e.g., [10, 21, 24, 39, 42, 52, 54, 56–58]).

2 lg∗ N is the number of times the logarithm function lg can be iteratively applied to N until
lg∗ N ≤ 1.
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Recently, Nakagawa et al. proposed the first secure two-party protocol for EDM
(sEDM) [44] based onHE. However, their algorithm suffers from a bottleneck during
the step where the parties construct a shared labeling scheme. Yoshimoto improved
the previous algorithm tomake it easier to use in practice [59].We review the practical
algorithm here.

6.2.2 Edit Distance with Moves

Based on the notation for strings in the previous section, EDM(S, S′) is the length of
the shortest sequence of edit operations that transforms S into S′, where the permitted
operations (each having unit cost) are inserting, deleting, or renaming one symbol
at any position, or moving an arbitrary substring. Unfortunately, as Theorem 6.1
states, computing EDM(S, S′) is NP-hard even if the renaming operations are not
allowed [55], so we focus on an approximation algorithm for EDM, called Edit-
Sensitive Parsing (ESP) [12].

Theorem 6.1 (Shapira and Storer [55])Determining EDM(x, y) is NP-hard even if
only three unit-cost operations are allowed, namely, inserting a character, deleting
a character, and moving a substring.

ESP constructs a parsing tree, called an ESP tree, for a given string S, where
internal nodes are labeled consistently, that is, internal nodes have a common name if
and only if they derive the same string. After two ESP trees TS and TS′ are constructed
for given strings S and S′ for comparison in EDM, the characteristic vectors vS and
vS′ are defined such that vS[i] is the frequency of the i th label in TS . EDM(S, S′) is
then approximated by L1(vS, vS′) with the following lower/upper bounds.

Theorem 6.2 (Cormode and Muthukrishnan [12]) Let TS and TS′ be consistently
labeled ESP trees for S, S′ ∈ �∗, and let vS be the characteristic vector for S, where
vS[k] is the frequency of label k in TS. Then,

1

2
EDM(S, S′) ≤ L1(vS, vS′) = O(lg∗ N lg N )EDM(S, S′)

for L1(vS, vS′) =
k∑

i=1

|vS[i] − vS′ [i]|.

In Fig. 6.1, we illustrate an example of consistent labeling of the trees TS and
TS′ together with the resulting characteristic vectors. Since the strings S and S′ are
parsed offline, the problem of preserving privacy is reduced to designing a secure
protocol for creating consistent labels and computing the L1-distance between the
trees.
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Fig. 6.1 Example of approximate EDM. For strings S = adabcadeab and S′ = eabcadadab, S
is transformed into S′ by two moves of substrings, that is, EDM(S, S′) = 2. After constructing ESP
trees TS and TS′ with consistent labeling, the corresponding characteristic vectors vS and vS′ are
computed offline. The exact EDM(S, S′) is approximated by L1(vS, vS′ ) = 4

6.2.3 Homomorphic Encryption

We now briefly review the framework of homomorphic encryption. Let (pk, sk) be
a key pair for a public-key encryption scheme, and let Epk(x) be the encrypted value
of a message x and Dsk(C) be the decrypted value of a ciphertext C , respectively.
We say that the encryption scheme is additively homomorphic if we have the fol-
lowing properties: (1) There is an operation h+(·, ·) for Epk(x) and Epk(y) such
that Dsk(h+(Epk(x), Epk(y))) = x + y. (2) For any r , we can compute the scalar
multiplication such that Dsk(r · Epk(x)) = r · x .

An additive homomorphic encryption scheme that allows a sufficient number of
these operations is called an additive HE.3 Paillier’s encryption scheme [48] is the
first secure additive HE. However, there are not many functions that can be evaluated
by using only additive homomorphism and scalar multiplication.

The multiplication Dsk(h×(Epk(x), Epk(y))) = x · y is another important homo-
morphism. If we allow both additive and multiplicative homomorphism as well as
scalar multiplication (called a fully homomorphic encryption, FHE [19] for short),
it follows that we can perform any arithmetic operation on ciphertexts. For example,
if we can use sufficiently large number of additive operations and a single multi-
plicative operation over ciphertexts, we obtain the inner-product of two encrypted
vectors.

However, there is a trade-off between the available homomorphic operations and
their computational cost. To avoid this difficulty,we focus on leveledHE(LHE)where
the number of homomorphic multiplications is restricted beforehand. In particular,

3 In general, the number of applicable operations over ciphertexts is bounded by the size of (pk, sk).
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L2HE (Additive HE that allows a single homomorphic multiplication) has attracted a
great deal of attention. TheBGNencryption system is thefirst L2HEandwas invented
by Boneh et al. [6] by assuming a single multiplication and sufficient numbers of
additions. Using BGN, we can securely evaluate formulas in disjunctive normal
form. Following this pioneering study, many practical L2HE protocols have been
proposed [2, 9, 16, 22].

In terms of EDM computation, although Nakagawa et al. [44] introduced an
algorithm for computing the EDM based on L2HE, their algorithm is very slow for
large strings. Following on from this work, Yoshimoto et al. proposed another novel
secure computation of EDM for large strings based on the faster L2HE proposed
by Attrapadung et al. [2]. To our knowledge, there is no secure two-party protocol
for EDM computation that uses only the additive homomorphic property. Whether
we can compute EDM using a two-party protocol based on additive HE alone is an
interesting question.

For the benefit of the reader, we give a simple review of the mechanism used by
BGN, the first L2HE. For plaintexts m1,m2 ∈ {1, . . . , M} and their corresponding
ciphertextsC1 andC2, the ciphertexts ofm1 + m2 andm1m2 can be computeddirectly
from C1 and C2 without decrypting m1 and m2, provided m1 + m2,m1m2 ≤ M .

For large primes q1 and q2, the BGN encryption scheme is based on two multi-
plicative cyclic groups G and G

′ of order q1q2, two generators g1 and g2 of G, an
inverse function (·)−1 : G → G, and a bihomomorphism e : G × G → G

′. By def-
inition, e(·, x) and e(x, ·) are group homomorphisms for all x ∈ G. In addition, we
assume that both the inverse function (·)−1 and the bihomomorphism e can be com-
puted in polynomial time in terms of the security parameter log2 q1q2. Such a system
(G,G′, g1, g2, (·)−1, e) can be generated by, for example, letting G be a subgroup
of a supersingular elliptic curve and e be a Tate pairing [6]. The BGN encryption
scheme proceeds as follows.

Key generation: Randomly generate two sufficiently large primes q1 and q2, then
use these to define (G,G′, g1, g2, (·)−1, e) as described above. Choose two random
generators g and u ofG, set h = uq2 , and let M be a positive integer bounded above
by a polynomial function of the security parameter log2 p1 p2. The public key is then
pk = (p1 p2,G,G′, e, g, h, M) and the private key is sk = q1.

Encryption: Encrypt themessagem ∈ {0, . . . , M} using pk and a random r ∈ Zn

to C = gmhr ∈ G yielding the ciphertext C .
Decryption: Find the integerm such that Cq1 = (gmhr )q1 = (gq1)m using a poly-

nomial time algorithm. There is a known algorithm for this with time complexity of
O(

√
M).

Homomorphic properties: For the ciphertexts C1 = gm1hr1 and C2 = gm2hr2 in
G corresponding to the messages m1 and m2, anyone can calculate the encrypted
value of m1 + m2 and m1m2 directly from C1 and C2 without knowing m1 and m2,
as follows.

– Additive homomorphism:

Ca = C1C2h
r = (gm1hr1)(gm2hr2)hr = gm1+m2hr1+r2+r
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gives the encrypted value of m1 + m2.
– Multiplicative homomorphism: Cm = e(C1,C2)hr ∈ G

′ gives the encrypted
value of m1m2, because

Cq1
m = e(C1,C2)

= [
e(g1, g2)

m1m2e(g1, g2)
q2m1r1e(g2, g1)

q2m2r1e(g1, g2)
q2r

]q1

= (
e(g1, g2)

q1
)m1m2

,

where we decrypt Cm , by computing m1m2 from (g(g1, g2)q1)
m1m2 and e(g1, g2)q1 .

Note thatC1,C2 ∈ G
′ also have additive homomorphic properties, so BGNallows

a single multiplication and unlimited additions over ciphertexts.

6.2.4 L2HE-Based Algorithm for Secure EDM

Wenowexplain the algorithm for computing approximate EDMbased onL2HE [59].
Two parties A,B have strings SA, SB, respectively. First, they compute the corre-
spondingESP trees TA and TB offline and they assign tentative labels to internal nodes
of TA and TB using a hash function h : X → {1, 2, . . . , n} for X ⊆ {0, 1, . . . ,m}
of n different labels in TA and TB with a fixed m. The goal is to securely relabel X
using a bijection: X → {1, 2, . . . , n}, as described in Algorithm 2. We suppose that
A and B generate their own public and private keys prior to the computation.

In Algorithm 2, we assume an L2HE scheme allowing a single multiplicative
operation and a sufficient number of additive operations over encrypted integers.
Because these operations are usually implemented by AND (·) and XOR (⊕) logic
gates (e.g., [7]), we introduce the following notation for these gates. First, EA(x)
denotes the ciphertext generated by encrypting plaintext x with A’s public key,
and EA(x, y, z) is an abbreviation for the vector (EA(x), EA(y), EA(z). Here,
EA(x, y, z) · EA(a, b, c)denotes (EA(x · a), EA(y · b), EA(z · c)) and EA(x, y, z)
⊕ EA(a, b, c) denotes (EA(x ⊕ a), EA(y ⊕ b), EA(z ⊕ c)) for each bit x, y, z, a,

b, c ∈ {0, 1}. Using this notation, we describe the proposed protocol in Algorithm 2.
Next, we define the protocol security based on a model where both parties are

assumed to be semi-honest, that is, corrupt parties merely cooperate to gather infor-
mation out of the protocol, but do not deviate from the protocol specification. The
security is defined as follows.

Definition 6.1 (Semi-honest security [20]) A protocol is secure against semi-honest
adversaries if each party’s observation of the protocol can be simulated using only
the input they hold and the output that they receive from the protocol.

Intuitively, this definition tells us that a corrupt party is unable to learn any extra
information that cannot be derived from the input and output explicitly (for details,
see [20]). Under this assumption, since the algorithm is symmetric with respect
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Algorithm 2 for consistently labeling TA and TB [59]

Preprocessing (tentative labeling): Parties A and B agree to use a hash function H with a
range {0, . . . ,m} for sufficiently large m. Both parties compute TA and TB corresponding to
their respective strings offline. The label of internal node u is assigned H(s(u)) where s(u) is the
string of all leaves of u. Now, partiesA and B have tentative label sets [TA], [TB] ⊆ {0, . . . ,m},
respectively.

Goal: Change all the labels using a bijection: [TA] ∪ [TB] → {1, . . . , n} without either party
having to reveal anything about their private strings.

Notation: EA(x) denotes the ciphertext of a message x encrypted by an L2HE with A’s public
key.

Sharing a dictionary:
Step 1: Party A computes the bit vector X[1 . . .m] such that X[�] = 1 iff � ∈ [TA]. Similarly,
party B computes Y[1 . . .m] such that Y[�] = 1 iff � ∈ [TB].
Step 2: A sends EA(X) to B and B sends EB(Y) to A.
Step 3: B computes (EA(X) ⊕ EA(Y)) ⊕ (EA(X) · EA(Y)) = EA(X ∪ Y) and A computes
(EB(X) ⊕ EB(Y)) ⊕ (EB(X) · EB(Y)) = EB(X ∪ Y).

Relabeling [TA] using EA(X ∪ Y) ([TB] is relabeled in a symmetrical fashion)

Step 4: A computes EB(L�) = EB

(
�∑

i=1

(X ∪ Y)[i]
)
for all � ∈ [TA].

Step 5: A sends all EB(L� + r�) to B choosing r� uniformly at random from N.
Step 6: B decrypts all L� + r� and sends them back to A.
Step 7: A recreates L� ∈ {1, . . . , n} for all � ∈ [TA] by subtracting r�.

to A and B, the following theorem proves the security of our algorithm’s against
semi-honest adversaries.

Theorem 6.3 (Yoshimoto et al. [59]) Let [TA] be the set of labels appearing in TA.
The only knowledge that a semi-honest A can gain by executing Algorithm 2 is the
distribution of the labels {L� | � ∈ [TA]} over [1, . . . , n].
Theorem 6.4 (Yoshimoto et al. [59]) Algorithm 2 assigns consistent labels using
the injection: [TA] ∪ [TB] → {1, 2, . . . , n} without revealing the parties’ private
information. It has round and communication complexities of O(1) and O(α(n lg n +
m + rn)), respectively, where n = |[TA] ∪ [TB]|, m is themodulus of the rolling hash
used for preprocessing, r = max{r1, . . . , rn} is the security parameter, and α is the
cost of executing a single encryption, decryption, or homomorphic operation.
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Table 6.1 Comparison of the communication and round complexities of secure EDM computation
models [44, 59] as well as a naive algorithm. Here, N is the total length of both parties’ input strings,
n is the number of characteristic substrings determining the approximate EDM, and m is the range
of the rolling hash H(·) for the substrings satisfying m > n. “Naive” is the baseline method that
uses H(·) as the labeling function for the characteristic substrings

Method #Communication #Round

Naive O(m lgm) O(1)

Nakagawa et al. [44] O(n lg n) O(lg N )

Yoshimoto et al. [59] O(n lg n + m) O(1)

6.2.5 Result and Open Question

The complexities of related algorithms are summarized in Table6.1. Computing
the approximate EDM involves two phases: the shared labeling of characteristic
substrings (Phase 1) and the L1-distance computation of characteristic vectors (Phase
2).

Let the parties have strings x and y, respectively. In the offline case (i.e., there is no
need for privacy-preserving communication), they construct the respective parsing
trees Tx and Ty by the bottom-up parsing called ESP [12], where the node labels
must be consistent, meaning that two labels are equal if they correspond to the same
substring. In such an ESP tree, a substring derived by an internal node is called a
characteristic substring. In a privacy-preservingmodel, the two parties need to jointly
compute these consistent labels without revealing whether a characteristic substring
is common to both of them (Phase 1). After computing all the labels in Tx and Ty ,
they jointly compute the L1-distance of two characteristic vectors containing the
frequencies of all labels in Tx and Ty (Phase 2).

As reported in [44], a bottleneck exists in Phase 1. The task is to design a bijection
f : X ∪ Y → {1, 2, . . . , n} where X and Y (|X ∪ Y | = n) are the sets of character-
istic substrings for the parties, respectively. Since X and Y are computable without
communication, the goal is to jointly compute f (w) for anyw ∈ X without revealing
whether w ∈ Y . This problem is closely related to the private set operation (PSO)
where parties possessing their private sets want to obtain the results for several set
operations, such as intersection or union. Applying the Bloom filter [5] and HE tech-
niques, various protocols for PSO have been proposed [4, 13, 35]. However, these
protocols are not directly applicable to our problem because they require at least
three parties for the security constraints. In contrast, the algorithm reviewed here
introduced a novel secure two-party protocol for Phase 1.

As shown in Table6.1, the recent result eliminates the O(lg N ) round complexity
using the proposed method that can achieve O(1) round complexity while maintain-
ing the efficiency of communication complexity. Furthermore, the practical perfor-
mance of the algorithms for real DNA sequences was reported in [44].
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