
Chapter 13
Mean-Field Analysis of Sourlas Codes
with Adiabatic Reverse Annealing

Shunta Arai

Abstract In this chapter, we analyze the typical performance of adiabatic reverse
annealing (ARA) for Sourlas codes. Sourlas codes are representative error-correcting
codes related to p-body spin-glass models and have a first-order phase transition for
p > 2, which degrades the estimation performance. In the ARA formulation, we
introduce the initial Hamiltonian which incorporates the prior information of the
solution into a vanilla quantum annealing (QA) formulation. The ground state of the
initial Hamiltonian represents the initial candidate solution. To avoid the first-order
phase transition, we apply ARA to Sourlas codes. We evaluate the typical ARA
performance for Sourlas codes using the replica method. We show that ARA can
avoid the first-order phase transition if we prepare for the proper initial candidate
solution.

13.1 Introduction

Problems in information processing have been studied analytically from the view-
point of statisticalmechanics [12].Associativememory, Sourlas codes, code-division
multiple-access (CDMA), and image restoration are very popular examples [5, 6, 21,
24]. Many studies have focused on the degradation of the original signal or informa-
tion due to noise. The noise can be physically regarded as thermal fluctuations. The
original information can be estimated from the degraded data by tuning the strength
of thermal fluctuations.

In this chapter, we focus mainly on error-correcting codes such as Sourlas codes,
which are described by p-body spin-glass problems [21]. The main idea of error-
correcting codes is to add redundancy while sending information to decode the orig-
inal signal from noisy outputs. In Sourlas codes, the original signal is encoded in
the interactions of the spins. To estimate the original signal, we search the ground

S. Arai (B)
Graduate School of Information Sciences, Tohoku University, 980-8579 Sendai, Japan
e-mail: shunta.arai.d8@tohoku.ac.jp

Sigma-i Co.,Ltd., 108-0075 Minato, Tokyo, Japan

© The Author(s) 2022
N. Katoh et al. (eds.), Sublinear Computation Paradigm,
https://doi.org/10.1007/978-981-16-4095-7_13

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4095-7_13&domain=pdf
mailto:shunta.arai.d8@tohoku.ac.jp
https://doi.org/10.1007/978-981-16-4095-7_13


320 S. Arai

state of the Hamiltonian or compute the expectation value over the Gibbs–Boltzmann
distribution at a finite temperature.

In addition to thermal fluctuations, quantum fluctuations can also be used to infer
the original information. Several studies have demonstrated that quantumfluctuations
such as the transverse field do not necessarily enhance the performance of decoding
for image restoration, Sourlas codes, or CDMA [2, 6, 15, 16]. The optimal estimation
performance using quantum fluctuations is inferior to that using thermal fluctuations
in Bayes-optimal cases. However, in some non-Bayes optimal cases, the estimation
performance using finite quantum fluctuations and thermal fluctuations surpasses
that using only thermal fluctuations; for example, when the assigned temperature is
lower than the true noise scale. This implies the potential of combining quantum and
thermal fluctuations for signal recovery problems.

Signal estimation algorithms using quantum fluctuations are related to optimiza-
tion algorithms using quantum fluctuations, which is known as quantum annealing
(QA) [9] or adiabatic quantum computation (AQC) [3]. The QA algorithm is phys-
ically implemented in the quantum annealer [7]. The quantum annealer has been
tested in numerous applications, including traffic optimization [11] and in vehicles
in factories [14].

In a closed system, the QA procedure is as follows. First, we set the initial state as
the trivial ground state of the transverse field term. Next, we gradually decrease the
strength of the transverse field. Following theSchrodinger equation, the trivial ground
state evolves adiabatically into a nontrivial ground state of the target Hamiltonian,
which is consistent with a solution of combinatorial optimization problems. The
quantum adiabatic theorem indicates that the total computational time for searching
the ground state is characterized by the minimum energy gap between the ground
state and first excited state [23]. When the target Hamiltonian has a first-order phase
transition, the computational time to find the ground state grows exponentially.

Reverse annealing (RA) is a protocol for restarting quantum dynamics from the
final state of the standard QA procedure [17]. The RA algorithm can be used to
avoid or mitigate the first-order phase transition and is classified into two methods:
adiabatic reverse annealing (ARA) [13] and i terated reverse annealing (IRA)
[26]. ARA and IRA are distinguished by how the final state is utilized. One imple-
ments the final state by introducing the initial Hamiltonian, and the other incorporates
it as the initial condition.

In a recent study [2], ARA is applied to CDMA multiuser detection. ARA can
avoid or mitigate the first-order phase transition in the CDMAmodel. In this chapter,
we apply ARA for Sourlas codes. Sourlas codes have a first-order phase transition
for p > 2. The existence of the first-order phase transition deteriorates the estima-
tion performance. We evaluate the typical performance of ARA for Sourlas codes
using the replica method. We demonstrate that ARA can avoid the first-order phase
transition of Sourlas codes if we prepare the proper initial conditions.
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13.2 Sourlas Codes Using Quantum Fluctuations

Following a previous study [15], we formulate Sourlas codes using quantum fluctua-
tions. Sourlas codes are set up to send a set of products of p spins Ji1...i p = ξi1 . . . ξi p
through a channel. The symbol ξi = ±1(i = 1 . . . N ) represents the original signal,
which is independently generated from the uniform distribution P(ξi ) = 1/2. We
consider the Gauss channel as

P(Ji1...i p |{ξ}) =
(

N p−1

J 2πp!
) 1

2

exp

{
−N p−1

J 2 p!
(
Ji1...i p − J0 p!ξi1 . . . ξi p

N p−1

)2
}

, (13.1)

where J and J0 are hyperparameters. The ratio J0/J represents the signal-to-noise
ratio. The distribution P(Ji1...i p |{ξ}) is the conditional probability of the signal Ji1...i p
for the encoded signal ξi1 . . . ξi p . We infer the original signal {ξ} from the noisy
outputs {Ji1...i p }. Using the Bayes formula, we introduce the posterior probability for
the estimated signal σ = {σ1 . . . σN } ∈ {±1}N as

P(σ |{Ji1...i p }) = P({Ji1...i p }|σ )P(σ )∑
σ P({Ji1...i p }|σ )P(σ )

, (13.2)

where P({Ji1...i p }|σ ) and P(σ ) are the likelihood and prior distribution, respectively.
The summation of spin variables

∑
σ is defined for all possible configurations. The

likelihood can be expressed as

P({Ji1...i p }|σ ) ∝ exp

⎛
⎝β

∑
i1<···<i p

Ji1...i pσi1 . . . σi p

⎞
⎠ , (13.3)

whereβ is the inverse temperature and the summation
∑

i1<···<i p
runs over all possible

combinations of p spins out of N spins. According to Eqs. (13.2) and (13.3), the
posterior distribution can be written by using the Gibbs–Boltzmann distribution with
the classical Hamiltonian H (σ ), as follows:

P(σ |{Ji1...i p }) = 1

Z
exp {−β (H(σ ) + Hinit(σ ))} , (13.4)

Z =
∑

σ

exp {−β (H(σ ) + Hinit(σ ))} , (13.5)

H(σ ) = −
∑

i1<···<i p

Ji1...i pσi1 . . . σi p , (13.6)

where Z is the partition function and Hinit(σ ) is the initial Hamiltonian, which
represents the prior information of the estimated signal. We generally assume that
the prior of the estimated signal follows a uniform distribution P(σ ) = 1/2N .
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To decode the original signal, one decoding strategy is the maximum a posteriori
(MAP) estimation, which corresponds to searching the ground state of the classical
Hamiltonian of Sourlas codes in the limit of zero temperature.Another is themarginal
posterior mode (MPM) estimation, which corresponds to finding the expectation
value over the posterior distribution at a finite temperature. In the limit of zero
temperature, the MPM estimation is consistent with the MAP estimation. In this
chapter, we mainly consider the MPM estimation. The estimation performance can
be evaluated by the overlap between the original and estimated signal as

M (β) = Trξ
∏

i1<···<i p

∫
d Ji1...i p P(ξ)P({Ji1...i p }|ξ)ξisgn〈σi 〉 (13.7)

where 〈·〉 is the expectation over the posterior distribution P(σ |{Ji1...i p }). This quan-
tity is expected to exhibit a “self-averaging” property in the thermodynamics limit
N → ∞. This means that the observables, such as the overlap for a quenched real-
ization of the data {Ji1...i p }, and ξ , are equivalent to the expectation itself over the
data distribution P(ξ)P({Ji1...i p }|ξ). In this case, the overlap can be expressed as
limN→∞ M = [ξi sgn〈σi 〉], where the bracket [·] indicates the expectation over the
data distribution.

Quantum fluctuations can be utilized to decode the original information. The
Hamiltonian of Sourlas code using quantum fluctuations is expressed as follows:

Ĥ = sĤ0 + (1 − s)ĤTF, (13.8)

Ĥ0 = −
∑

i1<···<i p

Ji1...i p σ̂
z
i1

. . . σ̂ z
i p
, (13.9)

ĤTF = −
N∑
i=1

σ̂ x
i , (13.10)

where σ̂ z
i and σ̂ x

i are the z and x components of the Pauli matrix at site i . We param-
eterize the Hamiltonian by the annealing parameter s for the ARA formulation. Note
that Ĥ0 and ĤTF consist of the z and x components of the Pauli matrices, respec-
tively. As in the classical case, we can consider the MPM estimation using quantum
fluctuations. The performance of the MPM estimation using quantum fluctuations
can be evaluated by the overlap as follows:

M(β, s) = Tr{ξ}
∫ ∏

i1<···<i p

d Ji1...i p P({Ji1...i p }|{ξ})P({ξ})ξisgn〈σ̂ z
i 〉TF

≡ [ξi sgn(〈σ̂ z
i 〉TF)

]
, (13.11)

where 〈(·)〉TF ≡ Tr
(
(·) ρ̂

)
denotes the expectation over the density matrix ρ̂ ≡

e−βĤ/Tre−βĤ.
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13.3 Replica Analysis for Adiabatic Reverse Annealing

Following Ref. [13], we formulate Sourlas codes using quantum fluctuations in ARA
as follows:

Ĥ = sĤ0 + (1 − s)(1 − λ)Ĥinit + (1 − s)λĤTF, (13.12)

Ĥinit = −
N∑
i=1

τi σ̂
z
i , (13.13)

where λ (0 ≤ λ ≤ 1) is the RA parameter. We now introduce the initial candidate
solution τi = ±1 that is expected to be close to the correct ground state ξi . We define
the probability distribution of the initial candidate solutions as follows:

P(τ ) =
N∏
i=1

P (τi ) =
N∏
i=1

(c1δ(τi − ξi ) + c−1δ(τi + ξi )) , (13.14)

where we utilize the symbol c1 = c and c−1 = 1 − c. The number c (0 ≤ c ≤ 1)
denotes the fraction of the original signal τi = ξi in the initial candidate solution as

c = 1

N

N∑
i=1

δτi ξi . (13.15)

We consider that the ARA formulation is the case when we adopt P(σ z|τ ) ∝
exp

(
−β Ĥinit

)
as the prior distribution.

The typical behaviors of the order parameters, such as the overlap, can be
obtained via the free energy. The free energy density f can be evaluated as

−β f = limN→∞(1/N )[ln Z ] in the limit of N → ∞ where Z = Tr exp
(
−βĤ

)
is the partition function of Eq. (13.12). In general, the direct computation of the
free energy density is hard due to the configuration average of ln Z and the off-
diagonal elements in Eq. (13.12). The configuration average can be found using the
replica trick [20]. Even though we can avoid the direct computation of [ln Z ], we
cannot apply the standard techniques to evaluate the free energy density due to the
non-commutativity of the Hamiltonian.

First, to eliminate the non-commutativity of the Hamiltonian, we apply the
Suzuki–Trotter decomposition [22] to the partition function:

Z = lim
M→∞Tr

{
exp

(
− β

M

(
sĤ0 + (1 − s)(1 − λ)Ĥinit

))
exp

(
−β(1 − s)λ

M
ĤTF

)}M

= lim
M→∞ ZM , (13.16)

where



324 S. Arai

ZM =Tr exp

⎛
⎝βs

M

M∑
t=1

∑
i1<···<i p

Ji1···pσ
z
i1
(t) . . . σ z

i p
(t) + β(1 − s)(1 − λ)

M

N∑
i=1

τiσ
z
i (t)

+β(1 − s)λ

M

N∑
i=1

σ x
i (t)

)
×

N∏
i=1

M∏
t=1

〈σ z
i (t)|σ x

i (t)〉〈σ x
i (t)|σ z

i (t + 1)〉,
(13.17)

where the symbol t is the index of the Trotter slice, M is the Trotter number,
and Tr denotes the trace in the z and x basis. We impose the periodic bound-
ary conditions σ z

i (1) = σ z
i (M + 1) for all i and introduce the identity operator

1̂ =∑{σ z(t)} |{σ z(t)}〉〈{σ z(t)}| and 1̂ =∑{σ x (t)} |{σ x (t)}〉〈{σ x(t)}|. The detailed cal-
culation is given in Appendix 13.5.

To evaluate [ln Z ], we utilize the replica trick [20]:

[log Z ] = lim
n→0

[Zn] − 1

n
, (13.18)

where n is the replica number. The replicated partition function can be written as

[Zn] = lim
M→∞

∑
{ξi=±1}

∑
{τi=±ξi }

P(ξ)P(τ )
∏

i1<···<i p

∫
d Ji1,...,i p P({Ji1,...,i p }|ξi1 . . . ξi p )

× Tr exp

⎧⎨
⎩

βs

M

∑
t,a

∑
i1<···<i p

Ji1···pσ
z
i1a

(t) . . . σ z
i pa

(t) + β(1 − s)(1 − λ)

M

∑
i,t,a

τiσ
z
ia(t)

+β(1 − s)λ

M

∑
i,t,a

σ x
ia(t)

}∏
i,t,a

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉, (13.19)

in which a denotes the replica index.
To remove the dependency of the original signal {ξ}, we apply the gauge trans-

formation Ji1...i p → Ji1...i pξi1 . . . ξi p and σ z
ia(t) → σ z

ia(t)ξi to the partition function
[Zn

M ]. Performing the Gaussian integration over the distribution in Eq. (13.1), we
introduce the following order parameters as

ma(t) = 1

N

N∑
i=1

σ z
ia(t), (13.20)

qab(t, t
′) = 1

N

N∑
i=1

σ z
ia(t)σ

z
ib(t

′), (13.21)

Ra(t, t
′) = 1

N

N∑
i=1

σ z
ia(t)σ

z
ia(t

′), (13.22)
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mx
a(t) = 1

N

N∑
i=1

σ x
ia(t). (13.23)

The physical meanings of the order parameters are as follows: ma(t) is the mag-
netization, qab(t, t ′) is the spin-glass order parameter, Ra(t, t ′) is the correlation
between each Trotter slice, and mx

a(t) is the transverse magnetization. Moreover,
we introduce the auxiliary parameters m̃a(t), q̃ab(t, t ′), R̃a(t, t ′), m̃x

a(t) of the order
parameters with the delta function and its Fourier integral representation. Under
the replica symmetry (RS) ansatz and static approximation, ma(t) = m, qab(t, t ′) =
q, Ra(t, t ′) = R,mx

a(t) = mx , m̃a(t) = m̃, q̃ab(t, t ′) = q̃, R̃a(t, t ′) = R̃, m̃x
a(t) =

m̃x , we can attain the RS free energy density:

−β fRS = βs J0m
p + β2s2 J 2

4
(Rp − q p) + β(1 − s)λmx − βmm̃ − βmxm̃x

− β2

2
(RR̃ − qq̃) +

∑
a=±1

ca

∫
Dz ln 2Ya, (13.24)

Ya ≡
∫

Dy cosh βua, (13.25)

ua ≡
√
g2a + (m̃x )2, (13.26)

ga ≡ m̃ + a(1 − s)(1 − λ) +√q̃z +
√
R̃ − q̃ y, (13.27)

where Dz means that the Gaussian measure Dz := 1/
√
2πdze−z2/2, and Dy is the

same as Dz. Detailed calculations for deriving the free energy density in Eq. (13.24)
are provided in Appendix 13.5. The order parameters and their auxiliary parame-
ters are determined by the saddle-point conditions in the free energy density. The
extremization of Eq. (13.24) yields the following saddle-point equations:

m =
∑
a=±1

ca

∫
DzY−1

a

∫
Dy

(
ga
ua

)
sinh βua, (13.28)

q =
∑
a=±1

ca

∫
Dz

{
Y−1
a

∫
Dy

(
ga
ua

)
sinh βua

}2
, (13.29)

R =
∑
a=±1

ca

∫
DzY−1

a

∫
Dy

{(
(m̃x )2

βu3a

)
sinh βua +

(
ga
ua

)2

cosh βua

}
,

(13.30)

mx =
∑
a=±1

ca

∫
DzY−1

a

∫
Dy

(
m̃x

ua

)
sinh βua, (13.31)
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m̃ = s J0 pm
p−1, (13.32)

q̃ = s2 J 2

2
pq p−1, (13.33)

R̃ = s2 J 2

2
pRp−1, (13.34)

m̃x = (1 − s)λ. (13.35)

From Eq. (13.11), the overlap function is easily expressed as

M(β, s, λ) =
∑
a=±1

ca

∫
Dzsgn

{
Y−1
a

∫
Dy

(
ga
ua

)
sinh βua

}
. (13.36)

In the low-temperature region, the p-body spin-glass model is known to exhibit
replica symmetry breaking (RSB) [4]. The stability condition of RS solutions under
the static approximation is expressed as

β2s2 J 2 p(p − 1)

2
q p−2

(∑
a=±1

ca Aa

)
< 1, (13.37)

Aa ≡
∫

Dz

{(
Y−1
a

∫
Dy

(
ga
ua

)
sinh βua

)2

−Y−1
a

(∫
Dy

(
(m̃x )2

βu3a

)
sinh βua +

∫
Dy

(
ga
ua

)2

cosh βua

)}2

. (13.38)

This condition, called the Almeida–Thouless (AT) condition [1], can be attained
by considering perturbations to the RS solutions. This result is consistent with the
previous result in Ref. [25] for p = 2 , J0 = 0, and λ = 1.

13.4 Numerical Experiments

Wenumerically solve the saddle-point equations in Eqs. (13.28)–(13.35) with p = 5,
temperature T = 0.05, and signal-to-noise ratio J0/J = 1.5. To evaluate the typical
MPMestimationperformance,weoften utilize the overlapM(β, s, λ). In this chapter,
we focusmainly on the possibility of avoiding thefirst-order phase transitionbyARA.
For the sake of simplicity and computational cost, we adopt the magnetization as
a measure of the average MPM estimation performance using ARA. Figure 13.1a
shows the phase diagram of the Sourlas codes using quantum fluctuations in ARA.
We consider three initial conditions: c = 0.7, 0.8, and 0.95. Each line represents a
point of the first-order phase transition. We call these lines “critical” lines. We can
avoid a first-order phase transition by preparing for proper initial conditions. When



13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing 327

Fig. 13.1 a Phase diagram of Sourlas codes in ARA for c = 0.7, 0.8, and 0.95. The vertical and
horizontal axes represent the annealing parameter and the RA parameter, respectively. Each line
represents the point where the first-order phase transition occurs. The AT line indicates where the
AT condition is broken above the line. b Differences in magnetization between two local minima
at the first-order phase transition in Fig. 13.1 (a). The vertical axis denotes the differences in the
magnetization between two local minima at the first-order phase transition while the horizontal axis
represents the RA parameter

we increase the ratio of the ground state in the initial Hamiltonian, the region where
we can avoid the first-order phase transition becomes wider.

We also compute the AT condition Eq. (13.37). As shown in Fig. 13.1a, the AT
condition is broken between the AT line and the “critical” line for c = 0.7. If the
fraction of the ground state in the initial candidate solution is not enough, the spin-
glass phase emerges and RSB occurs. The emergence of RSB implies the existence
of a metastable state. Figure13.1a shows that we can avoid RSB if we tune the RA
parameter λ. For c = 0.8, the AT condition is broken in the low λ region. The region
where the AT condition is broken is smaller than that for c = 0.7. Since we cannot
distinguish the AT line from the “critical” line at this scale, we omit the AT line from
Fig. 13.1a. For c = 0.95, the AT condition holds. Therefore, the local stability of the
RS solution is recovered if we can prepare for the proper initial conditions.

To evaluate the extent to which ARA mitigates the difficulty of estimating the
original signal, we plot the differences in the magnetization 
m between the two
local minima at the first-order phase transition for c = 0.7, 0.8, and 0.95. Significant
differences in themagnetization result in the separation of the two localminima of the
free energy. Figure13.1b shows that
m decreases as c increases. The two local min-
ima of free energy are brought closer byARA.As discussed in Ref. [13], the quantum
tunneling rate between two local minima in the free-energy landscape increases if
the distance between the two local minima is smaller. Our results demonstrate that
ARA for Sourlas codes enhances the quantum tunneling effects if we prepare for an
appropriate initial condition. This result is consistent with the CDMA model [2].
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13.5 Summary

In this chapter, we explained amean field analysis of ARA for Sourlas codes. Sourlas
codes have a first-order phase transition with p > 2, which deteriorates their esti-
mation performance. To avoid the first-order phase transition, we applied ARA to
Sourlas codes. The first-order phase transition can be avoided by preparing for the
proper initial conditions. The region where the first-order phase transition can be
avoided becomes larger as c increases. We investigated the differences in magneti-
zation between the two local minima at the first-order phase transition. When ARA
was applied, the two local minima of the free energy came closer if we prepared for
the proper initial conditions. ARA improved the probability of escaping the local
minimum by quantum tunneling. This study shows that ARA can be useful for error
correcting codes.

In the practical case, we need to prepare for the initial candidate solution by
using some algorithms. In the previous study [2] for CDMA multiuser detection,
we utilized the approximate message passing algorithm [8] to prepare for the initial
candidate solution. The performance of ARA in practical case was different from
the oracle cases where the initial candidate solution was generated from the original
signal. Evaluation of the performance of ARA in the practical case for Sourlas codes
is an interesting future direction.

Acknowledgements We are grateful for valuable comments from Kazuyuki Tanaka, Masayuki
Ohzeki, Manaka Okuyama, and ACC Coolen. This work was partly supported by JST-CREST (No.
JPMJCR1402).

Appendix 1: Derivation of Eq. (13.17)

In this appendix, we derive Eq. (13.15) in detail.Wemainly follow the references [10,
18, 19].We consider the z basis as the computational basis. In this case, Tr is replaced
by
∑

{σ z}〈{σ z}|(·)|{σ z}〉 and |{σ z}〉 ≡ ⊗N
i=1|σ z

i 〉. For the z basis, we introduce M

copies of the identity operator 1̂ =∑{σ z(t)} |{σ z(t)}〉〈{σ z(t)}| into Eq. (13.16),

ZM = lim
M→∞

M∏
t=1

∑
{σ z(t)}

exp

(
− β

M

M∑
t=1

(sH0 + (1 − s)(1 − λ)Hinit)

)

×
M∏
t=1

〈{σ z(t)}| exp
(

−β(1 − s)λ

M
ĤTF

)
|{σ z(t + 1)}〉 (13.39)

where we introduce the periodic boundary condition |{σ z(1)}〉 = |{σ z(M + 1)}〉. To
show the dependence of the spin operator on the Trotter index, arguments are added
to each Hamiltonian in Eq. (13.39). For x basis, we similarly introduce the M copies
of the identity operator 1̂ =∑{σ x (t)} |{σ x (t)}〉〈{σ x(t)}| into Eq. (13.39). The last



13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing 329

term in Eq. (13.39) can be written as

M∏
t=1

∑
{σ x (t)}

exp

(
−β(1 − s)λ

M
HTF

) M∏
t=1

〈{σ z(t)}|{σ x(t)}〉〈{σ x(t)}|{σ z(t + 1)}〉.

(13.40)

Finally, we can obtain Eq. (13.17) in the main text as

ZM =
M∏
t=1

Tr exp

(
− β

M

M∑
t=1

(sH0 + (1 − s)(1 − λ)Hinit) − β(1 − s)λ

M

M∑
t=1

HTF

)

×
N∏
i=1

M∏
t=1

〈σ z
i (t)|σ x

i (t)〉〈σ x
i (t)|σ z

i (t + 1)〉, (13.41)

where Tr denotes the summation over all the possible spin configurations {σ z
i } and{σ x

i }. Since the first term in Eq. (13.41) consists of the commutable numbers, we can
take the configuration average over the data distribution.

Appendix 2: Derivation of the RS Free Energy

We derive the free energy density under the RS ansatz and the static approximation.
After the gauge transformation Ji1...i p → Ji1...i pξi1 . . . ξi p and σ z

ia(t) → σ z
ia(t)ξi , we

integrate over Ji1,...,i p as

∏
i1<···<i p

[∫
d Ji1,...,i p P({Ji1,...,i p }|{ξ}) exp

{
βs

M

∑
a,t

Ji1···pσ z
i1a

(t) . . . σ z
i pa

(t)

}]

=
∏

i1<···<i p

exp

⎧⎨
⎩
N p−1

J 2 p!

(
J0 p!
N p−1 + βs J 2 p!

2MN p−1

∑
a,t

σ z
i1a

(t) . . . σ z
i pa

(t)

)2

− J 20 p!
J 2N p−1

⎫⎬
⎭

 exp

⎧⎨
⎩

βs J0N

M

∑
a,t

(
1

N

N∑
i=1

σ z
ia(t)

)p

+ β2s2 J 2N

4M2

∑
a,b,t,t ′

(
1

N

N∑
i=1

σ z
ia(t)σ

z
ib(t

′)
)p
⎫⎬
⎭ ,

(13.42)

where we use the expression
∑

i1<···<i p
σ z
i1

. . . σ z
i p

= (N p/p!)
(∑N

i=1 σ z
i /N

)p +
O(N p−1). We introduce the delta function and its Fourier integral representation
for Eqs. (13.20)–(13.23) as follows:

∏
a,t

∫
dma(t)δ

(
ma(t) − 1

N

N∑
i=1

ξiσ
z
ia(t)

)
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=
∏
a,t

∫
βi Ndma(t)dm̃a(t)

2πM
e
− βm̃a (t)

M

(
Nma(t)−∑N

i=1 ξiσ
z
ia(t)

)
, (13.43)

∏
a,t,t ′

∫
dRa(t, t

′)δ

(
Ra(t, t

′) − 1

N

N∑
i=1

σ z
ia(t)σ

z
ia(t

′)

)

=
∏
a,t,t ′

∫
β2i NdRa(t, t ′)d R̃a(t, t ′)

4πM2
e
− β2 R̃a (t,t ′)

2M2

(
N Ra(t,t ′)−∑N

i=1 σ z
ia(t)σ

z
ia(t

′)
)
, (13.44)

∏
a �=b,t,t ′

∫
dqab(t, t

′)δ

(
qab(t, t

′) − 1

N

N∑
i=1

σ z
ia(t)σ

z
ib(t

′)

)

=
∏

a �=b,t,t ′

∫
β2i Ndqab(t, t ′)dq̃ab(t, t ′)

4πM2
e
− β2 q̃ab (t,t ′)

2M2

(
Nqab(t,t ′)−∑N

i=1 σ z
ia(t)σ

z
ib(t

′)
)
,

(13.45)

∏
a,t

∫
dmx

a(t)δ

(
mx

a(t) − 1

N

N∑
i=1

σ x
ia(t)

)

=
∏
a,t

∫
βi Ndmx

a(t)dm̃
x
a(t)

2πM
e
− βm̃x

a (t)
M

(
Nmx

a (t)−
∑N

i=1 σ x
ia(t)

)
. (13.46)

The partition function can be written as

[Zn ]  lim
M→∞

∏
a,t

∫
βi Ndma(t)dm̃a(t)

2πM

∏
a,t �=t ′

∫
β2i NdRa(t, t ′)d R̃a(t, t ′)

4πM2

×
∏

a �=b,t,t ′

∫
β2i Ndqab(t, t

′)dq̃ab(t, t ′)
4πM2

∏
a,t

∫
βNdmx

a (t)dm̃x
a (t)

2π iM
eG1+G2+G3, (13.47)

eG1 ≡ exp

⎧⎨
⎩

βs J0N

M

∑
a,t

(ma(t))p + β2 s2 J2 N

4M2

⎛
⎝ ∑
a �=b,t,t ′

q p
ab(t, t

′) +
∑

a,t �=t ′
Rp
a (t, t ′) + nM

⎞
⎠
⎫⎬
⎭

(13.48)

eG2 ≡
∑

{ξi=±1}

∑
{τi=±ξi }

P(ξ)P(τ )Tr exp

⎧⎨
⎩

β

M

∑
a,t

m̃a(t)
N∑
i=1

σ z
ia(t)

+β(1 − s)(1 − λ)

M

∑
a,t,i

τi ξiσ
z
ia(t) + β2

2M2

∑
a,t �=t ′

R̃a(t, t ′)
N∑
i=1

σ z
ia(t)σ z

ia(t ′)

+ β2

2M2

∑
a �=b

∑
t,t ′

q̃ab(t, t
′)

N∑
i=1

σ z
ia(t)σ z

ib(t
′) + β

M

∑
a,t

m̃x
a (t)

N∑
i=1

σ x
ia(t)

⎫⎬
⎭

×
∏
a,t,i

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉, (13.49)
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eG3 ≡ exp

⎧⎨
⎩−βN

M

∑
a,t

m̃a(t)ma(t) − β2N

2M2

∑
a,t �=t ′

R̃a(t, t ′)Ra(t, t ′)

−β2N

2M2

∑
a<b

∑
t,t ′

q̃ab(t, t
′)qab(t, t ′) − βN

M

∑
a,t

m̃x
a (t)mx

a (t)

+β(1 − s)λN

M

∑
a,t

mx
a (t)

⎫⎬
⎭ . (13.50)

We assume the RS ansatz and the static approximation as

ma(t) = m, qab(t, t
′) = q (a �= b), Ra(t, t

′) = R (t �= t ′),mx
a(t) = mx ,

m̃a(t) = m̃, q̃ab(t, t
′) = q̃ (a �= b), R̃a(t, t

′) = R̃ (t �= t ′), m̃x
a(t) = m̃x . (13.51)

Under the RS ansatz and the static approximation, eG1 is represented as

eG1 ≡ exp

{
βnN

(
s J0m

p + βs2 J 2

4

(
(n − 1)q p + Rp

)+ O
(

1

M

))}
. (13.52)

We compute eG2 under the RS ansatz and the static approximation as follows:

eG2 =
∑

{ξi=±1}

∑
{τi=±ξi }

P(ξ)P(τ )Tr exp

{
βm̃

M

∑
a,t,i

σ z
ia(t)

+β(1 − λ)(1 − s)

M

∑
a,t,i

τiξiσ
z
ia(t) + β2 R̃

2M2

∑
a,t �=t ′

N∑
i=1

σ z
ia(t)σ

z
ia(t

′)

+ β2q̃

2M2

∑
a �=b

∑
t,t ′

N∑
i=1

σ z
ia(t)σ

z
ib(t

′) + βm̃x

M

∑
a,t

N∑
i=1

σ x
ia(t)

⎫⎬
⎭

×
∏
a,t,i

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉

=
N∏
i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

n∏
a=1

∫
Dy

M∏
t=1

Tr exp

{
β

M
(m̃

+(1 − s)(1 − λ)τiξi + q̃z +
√
R̃ − q̃ y

)
σ z
ia(t) + βm̃x

M
σ x
ia(t)

}

×
∏
a,t,i

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉

=
N∏
i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

(∫
Dy2 cosh β

√
g2(τi , ξi ) + (m̃x )2

)n
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N∏
i=1

∑
ξi=±1

1

2
exp

⎧⎨
⎩n
∫

Dz
∑

τi=±ξi

P(τi ) ln
∫

Dy2 cosh β
√
g2(τi , ξi ) + (m̃x)2

⎫⎬
⎭

= exp

{
nN

(∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh β

√
g2a + (m̃x )2

)}
, (13.53)

where

g(τi , ξi ) = m̃ + (1 − s)(1 − λ)τiξi +√q̃z +
√
R̃ − q̃ y, (13.54)

ga = m̃ + a(1 − s)(1 − λ) +√q̃z +
√
R̃ − q̃ y. (13.55)

We apply the Hubbard–Stratonovich transformation,

exp

(
x2

2

)
=
∫

Dv1 exp (xv1) , (13.56)

to the terms
(
β
√
q̃/M

∑
a,t σ

z
ia(t)

)2
/2 and

∑
a

(
β

√
R̃ − q̃/M

∑
t σ

z
ia(t)

)2

/2. We

now perform the inverse operation of the Suzuki–Trotter decomposition and take the
trace.

Under the RS ansatz and the static approximation, eG3 is expressed as

eG3 = exp

{
βnN

(
−mm̃ − mxm̃x − β

2
RR̃ − β(n − 1)

2
qq̃ + (1 − s)λmx

)
+ O

(
1

M

)}
.

(13.57)

In the thermodynamic limit N → ∞, the saddle-point method can be used. The
RS free energy density is then expressed as

−β fRS = lim
n→0

[Zn] − 1

nN

= extr
m,q,R
m̃,q̃,R̃

[
βs J0m

p + β2s2 J 2

4
(Rp − q p) + β(1 − s)λmx − βmm̃ − βmxm̃x

−β2

2
(RR̃ − qq̃) +

∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh β

√
g2a + (m̃x )2

]
.

(13.58)

The order parameters and their auxiliary parameters can be determined from the
saddle-point conditions.
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