Skip to main content

Two-Stage Convolutional Neural Network for Knee Osteoarthritis Diagnosis in X-Rays

  • Conference paper
  • First Online:
Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021) (MICAD 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 784))

  • 805 Accesses

Abstract

Knee osteoarthritis (OA) is a common musculoskeletal illness. To solve the problem that inaccurate knee joint localization and inadequate knee OA features extracted from plain radiographs affect the accuracy of knee OA diagnosis in X-rays, we propose a novel Two-Stage Convolutional Neural Network (TS-CNN) method, consisting of the KneeDetnet and the KLnet. The KneeDetnet with two small multi-task convolutional neural networks is proposed to locate knee joints, improving the accuracy of knee joint localization. Then KLnet is designed to assess knee OA, where a shared Siamese network via ResNet is used to extract more discriminative deep learning features that are fused with gender information for obtaining richer features. Our method is evaluated on public OAI and MOST datasets. The highest detection accuracy of knee joints can reach 99.93% and 99.02% on two datasets, respectively. The KLnet algorithm achieves 78.85% and 68.20% prediction accuracy on the OAI and MOST datasets, respectively. Experimental results show that our method outperforms the existing workhorse. The proposed approach may become a potentially useful tool for assisting physicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact various medical imaging categories [14, 17], such as magnetic resonance imaging (MRI) and ultrasound imaging, are used in medicine. However, X-ray is a favourite one due to its economic aspect.

  2. 2.

    The details of KL are described in the Sect. 3.

  3. 3.

    The training data needs to be normally sized as \(48\times 48\times 3\) while test ones need to generate the pyramid.

  4. 4.

    The coefficient 0.2 can be chosen as others.

References

  1. Antony, J., McGuinness, K., Moran, K., O’Connor, N.E.: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: International Conference on Machine Learning and Data Mining in Pattern Recognition, pp. 376–390. Springer (2017). https://doi.org/10.1007/978-3-319-62416-7_27

  2. Antony, J., McGuinness, K., O’Connor, N.E., Moran, K.: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1195–1200. IEEE (2016). https://doi.org/10.1109/ICPR.2016.7899799

  3. Arden, N., Nevitt, M.C.: Osteoarthritis: epidemiology. Best Pract. Res. Clin. Rheumatol. 20(1), 3–25 (2006). https://doi.org/10.1016/j.berh.2005.09.007

    Article  Google Scholar 

  4. Braun, H.J., Gold, G.E.: Diagnosis of osteoarthritis: imaging. Bone 51(2), 278–288 (2012). https://doi.org/10.1016/j.bone.2011.11.019

    Article  Google Scholar 

  5. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014). https://doi.org/10.5244/C.28.6

  6. Cross, M., et al.: The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann. Rheumat. Dis. 73(7), 1323–1330 (2014). https://doi.org/10.1136/annrheumdis-2013-204763

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014). https://doi.org/10.1145/2647868.2654889

  9. Kellgren, J., Lawrence, J.: Radiological assessment of osteo-arthrosis. Ann. Rheumat. Dis. 16(4), 494 (1957). https://doi.org/10.1136/ard.16.4.494

    Article  Google Scholar 

  10. Kong, F.: Facial expression recognition method based on deep convolutional neural network combined with improved LBP features. Pers. Ubiquit. Comput. 1–9 (2019). https://doi.org/10.1007/s00779-019-01238-9

  11. Liu, C., et al.: Automatic segmentation of the prostate on CT images using deep neural networks (DNN). Int. J. Radiat. Oncol.* Biol.* Phys. 104(4), 924–932 (2019). https://doi.org/10.1016/j.ijrobp.2019.03.017

    Article  Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015). https://doi.org/10.1109/CVPR.2015.7298965

  13. Nguyen, C.C., Tran, G.S., Nghiem, T.P., Burie, J.C., Luong, C.M.: Real-time smile detection using deep learning. J. Comput. Sci. Cybern. 35(2), 135–145 (2019). https://doi.org/10.15625/1813-9663/35/2/13315

    Article  Google Scholar 

  14. Norman, B., Pedoia, V., Majumdar, S.: Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288(1), 177–185 (2018). https://doi.org/10.1148/radiol.2018172322

    Article  Google Scholar 

  15. Oka, H., et al.: Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthritis Cartilage 16(11), 1300–1306 (2008). https://doi.org/10.1016/j.joca.2008.03.011

    Article  Google Scholar 

  16. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: WND-CHARM: multi-purpose image classification using compound image transforms. Pattern Recogn. Lett. 29(11), 1684–1693 (2008). https://doi.org/10.1016/j.patrec.2008.04.013

    Article  Google Scholar 

  17. Pedoia, V., Norman, B., Mehany, S.N., Bucknor, M.D., Link, T.M., Majumdar, S.: 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J. Magn. Reson. Imaging 49(2), 400–410 (2019). https://doi.org/10.1002/jmri.26246

    Article  Google Scholar 

  18. Puig-Junoy, J., Zamora, A.R.: Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. In: Seminars in Arthritis and Rheumatism, vol. 44, pp. 531–541. Elsevier (2015). https://doi.org/10.1016/j.semarthrit.2014.10.012

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  20. Shamir, L., Ling, S.M., Scott, W., Hochberg, M., Ferrucci, L., Goldberg, I.G.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis Cartilage 17(10), 1307–1312 (2009). https://doi.org/10.1016/j.joca.2009.04.010

    Article  Google Scholar 

  21. Shamir, L., et al.: Knee x-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 56(2), 407–415 (2008). https://doi.org/10.1109/TBME.2008.2006025

    Article  Google Scholar 

  22. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.: WND-CHARM: multi-purpose image classifier. Astrophysics Source Code Library (2013)

    Google Scholar 

  23. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.G.: Wndchrm-an open source utility for biological image analysis. Sour. Code Biol. Med. 3(1), 13 (2008). https://doi.org/10.1186/1751-0473-3-13

    Article  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1), 1727 (2018). https://doi.org/10.1038/s41598-018-20132-7

    Article  Google Scholar 

  27. Tiulpin, A., Thevenot, J., Rahtu, E., Saarakkala, S.: A novel method for automatic localization of joint area on knee plain radiographs. In: Scandinavian Conference on Image Analysis, pp. 290–301. Springer (2017). https://doi.org/10.1007/978-3-319-59129-2_25

  28. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. arXiv preprint arXiv:1904.02811 (2019)

  29. Wiggers, K.L., Britto Jr., A.S., Heutte, L., Koerich, A.L., Oliveira, L.S.: Image retrieval and pattern spotting using siamese neural network. arXiv preprint arXiv:1906.09513 (2019). https://doi.org/10.1109/IJCNN.2019.8852197

  30. Yang, S.: Feature engineering in fine-grained image classification. Ph.D. thesis (2013). http://hdl.handle.net/1773/23376

  31. Yoo, T.K., Kim, D.W., Choi, S.B., Park, J.S.: Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross-sectional study. PLoS ONE 11(2), e0148,724 (2016). https://doi.org/10.1371/journal.pone.0148724

    Article  Google Scholar 

  32. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Research and Development Program of China under No. 2018YFB0204301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Niu, X., Dou, Y., Yang, D., Xie, D., Yang, T. (2022). Two-Stage Convolutional Neural Network for Knee Osteoarthritis Diagnosis in X-Rays. In: Su, R., Zhang, YD., Liu, H. (eds) Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021). MICAD 2021. Lecture Notes in Electrical Engineering, vol 784. Springer, Singapore. https://doi.org/10.1007/978-981-16-3880-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3880-0_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3879-4

  • Online ISBN: 978-981-16-3880-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics