Skip to main content

Optical Biosensors Towards Point of Care Testing of Various Biochemicals

  • Chapter
  • First Online:
Advanced Micro- and Nano-manufacturing Technologies

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 1176 Accesses

Abstract

A steady rise in the use of point-of-care devices is warranted by the growing demand for medical attention and increased use of portable biosensing devices across various industries in different domains. Portable point-of-care devices provide simple, cost- and time-effective, reliable detection of various chemicals such as biomolecules, toxins or environmental pollutants, and microscopic entities such as parasites, viruses, bacteria and other pathogens. Among different biosensors, optical biosensors offer high sensitivity in the range of 10−6–10−8 RIU, real-time monitoring capability, cost-effectiveness, rapidity and compatibility to miniaturization. The versatility of this class of biosensors makes them attractive candidates, holding promising potential for use as next-generation point-of-care testing devices.

Optical biosensors use optical field parameters such as the amplitude, frequency, phase and polarization state to probe molecular interactions. Optical biosensors can be classified into label-based (e.g. fluorescence) and label-free (e.g. surface plasmon resonance) biosensors. Advances in the optical biosensing domain towards integrated optics, integration of microfluidic technology and microelectromechanical systems-assisted sensor fabrication techniques have significantly contributed to the field as they facilitate the fabrication and development of portable, cost-effective and high-throughput optical biosensing device. Label-based techniques offer excellent sensitivity and specificity for interrogating biomolecular interactions. Whereas label-free techniques directly detect and interpret the changes in optical parameters of the incident light wave on the biomolecules embedded on sensor surfaces, without hindered by photo-bleaching or other limitations faced by marker-dependent approaches. This chapter provides a brief overview of currently available label-based and label-free biosensors and discusses the potential and key limitations that require further advances in the field to facilitate successful commercialization of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO.: Report of the third global survey on eHealth Global Observatory for eHealth Global diffusion of eHealth: Making universal health coverage achievable [Internet]. (2016), http://apps.who.int/bookorders

  2. Christodouleas, D.C., Kaur, B., Chorti, P.: From point-of-care testing to eHealth diagnostic DEvices (eDiagnostics). ACS Cent. Sci. (2018)

    Google Scholar 

  3. Shaw, T., McGregor, D., Brunner, M., Keep, M., Janssen, A., Barnet, S.: What is eHealth (6)? Development of a conceptual model for ehealth: qualitative study with key informants. J. Med. Internet Res. (2017)

    Google Scholar 

  4. World Health Organization: Telemedicine: opportunities and developments report on the second global survey on eHealth Global Observatory for eHealth series-Volume 2 Telemedicine in Member States (2010)

    Google Scholar 

  5. Konwar, A.N., Borse, V.: Current status of point-of-care diagnostic devices in the Indian healthcare system with an update on COVID-19 pandemic. Sens. Int. 1, 100015 (2020a). Elsevier BV

    Google Scholar 

  6. Vikram, T.: Essence of point-of-care diagnostic testing (POCT) in remote healthcare in India [Internet]. https://www.linkedin.com/pulse/essence-point-of-care-diagnostic-testing-poct-remote-india-thaploo (2017)

  7. Kosack, C.S., Page, A.L., Klatser, P.R.: A guide to aid the selection of diagnostic tests. Bull. World Health Organ. [Internet]. 95(9), 639–645 (2017). World Health Organization. https://pubmed.ncbi.nlm.nih.gov/28867844/

  8. Luppa, P.B.: Point-of-care testing at the interface of emerging technologies and new clinical applications [Internet]. J. Lab. Med. 59–61 (2020). Walter de Gruyter GmbH, https://doi.org/10.1515/labmed-2020-0020

  9. Purohit, B., Vernekar, P.R., Shetti, N.P., Chandra, P.: Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis. Sens. Int. [Internet]. 1(July), 100040 (2020), Elsevier Ltd. https://doi.org/10.1016/j.sintl.2020.100040

  10. Dincer, C., Bruch, R., Costa-Rama, E., Fernández-Abedul, M.T., Merkoçi, A., Manz, A., et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. (2019)

    Google Scholar 

  11. Chen, C., Wang, J.: Optical biosensors: an exhaustive and comprehensive review. Anal. Royal Soc Chem.145(5), 1605–1628 (2020)

    Google Scholar 

  12. Damborský, P., Švitel, J., Katrlík, J.: Optical biosensors. Essays Biochem. 60(1), 91–100 (2016)

    Article  Google Scholar 

  13. Huertas, C.S., Calvo-Lozano, O., Mitchell, A., Lechuga, L.M.: Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front. Chem. 1–25, 7(October). (2019a)

    Google Scholar 

  14. Long, F., Zhu, A., Shi, H.: Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Switzerland) (2013)

    Google Scholar 

  15. Dey, D., Goswami, T.: Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J. Biomed Biotechnol. (2011)

    Google Scholar 

  16. Inan, H., Poyraz, M., Inci, F., Lifson, M.A., Baday, M., Cunningham, B.T., et al.: Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. (2017)

    Google Scholar 

  17. Ulep, T.H., Yoon, J.Y.: Challenges in paper-based fluorogenic optical sensing with smartphones. Nano Convergence (2018)

    Google Scholar 

  18. Mahato, K., Purohit, B., Kumar, A., Chandra, P.: Paper-based biosensors for clinical and biomedical applications: emerging engineering concepts and challenges. Compr. Anal.Chem. (2020)

    Google Scholar 

  19. Duque, T., Chaves Ribeiro, A.C., de Camargo, H.S., Costa Filho, P.A., da Mesquita Cavalcante, H.P., Lopes, D.: New insights on optical biosensors: techniques, construction and application. State of the Art in Biosensors—General Aspects [Internet]. (2013), InTech,  https://doi.org/10.5772/52330

  20. Hussain, S.A., Dey, D., Chakraborty, S., Saha, J., Roy, A.D., Chakraborty, S., et al.: Fluorescence resonance energy transfer (FRET) sensor. BMC Pharmacology [Internet]. 8(S1), (2014) Springer Nature, Aug 26 http://arxiv.org/abs/1408.6559

  21. Zhang, J., Shikha, S., Mei, Q., Liu, J., Zhang, Y.: Fluorescent microbeads for point-of-care testing: a review. Microchim. Acta (2019a)

    Google Scholar 

  22. Raja, S., Ching, J., Xi, L., Hughes, S.J., Chang, R., Wong, W., et al.: Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clin. Chem. 51(5), (2005)

    Google Scholar 

  23. Hochreiter, B., Garcia, A.P., Schmid, J.A.: Fluorescent proteins as genetically encoded FRET biosensors in life sciences [Internet]. Sensors (Switzerland). 26281–26314 (2015). MDPI AG, /pmc/articles/PMC4634415/?report=abstract

    Google Scholar 

  24. A., S.J., C P.L: Existing and emerging technologies for point-of-care testing—PubMed [Internet]. https://pubmed.ncbi.nlm.nih.gov/25336761/

  25. D’Auria, S., Ghirlanda, G., Parracino, A., de Champdoré, M., Scognamiglio, V., Staiano, M., et al.: Fluorescence biosensors for continuously monitoring the blood glucose level of diabetic patients. Glucose Sensing. [Internet]. pp. 117–130, Springer, US (2006) https://doi.org/10.1007/0-387-33015-1_5

  26. Hartman, M.R., Ruiz, R.C.H., Hamada, S., Xu, C., Yancey, K.G., Yu, Y., et al.: Point-of-care nucleic acid detection using nanotechnology. Nanoscale [Internet]. 5(21), 10141–54 (2013). The Royal Society of Chemistry, https://pubs.rsc.org/en/content/articlehtml/2013/nr/c3nr04015a

  27. Radiometer.: Analyseur d’immunodosage AQT90 FLEX—Radiometer [Internet].  https://www.radiometer.fr/fr-fr/produits/analyseur-d’immunodosage/analyseur-dimmunodosage-aqt90-flex

  28. Serra, P.A.: Biosensors for health, environment and biosecurity [Internet]. InTech, [cited 9 Nov 2020]. https://www.intechopen.com/books/biosensors-for-health-environment-and-biosecurity (2012)

  29. Taguchi, M., Ptitsyn, A., McLamore, E.S., Claussen, J.C.: Nanomaterial-mediated biosensors for monitoring glucose [Internet]. J. Diabetes Sci. Technol. 403–411 (2014). Diabetes Technology Society,  /pmc/articles/PMC4455391/?report=abstract

    Google Scholar 

  30. Geldert, A., Kenry, Lim, C.T.: Paper-based MoS2 nanosheet-mediated FRET aptasensor for rapid malaria diagnosis. Sci. Rep. [Internet]. 7(1) (2017) Nature Publishing Group,https://pubmed.ncbi.nlm.nih.gov/29235484/

  31. Zhang, X., Hashem, M.A., Chen, X., Tan, H.: On passing a non-Newtonian circulating tumor cell (CTC) through a deformation-based microfluidic chip. Theor. Comput. Fluid Dyn. [Internet]. 32(6), 753–764 (2018). Springer New York LLC,  https://ui.adsabs.harvard.edu/abs/2018ThCFD..32..753Z/abstract

  32. Khan, R., Khurshid, Z., Yahya Ibrahim Asiri, F.: Advancing point-of-care (PoC) testing using human saliva as liquid biopsy. Diagnostics (2017)

    Google Scholar 

  33. Shin, Y., Kim, J., Lee, T.Y.: A solid phase-bridge based DNA amplification technique with fluorescence signal enhancement for detection of cancer biomarkers. Sens. Actuators B Chem. (2014)

    Google Scholar 

  34. Kosaka, P.M., Pini, V., Calleja, M., Tamayo, J.: Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection. PLoS ONE (2017)

    Google Scholar 

  35. Girigoswami, K., Akhtar, N.: Nanobiosensors and fluorescence based biosensors: an overview. Int. J. Nano Dimension (2019)

    Google Scholar 

  36. Tokel, O., Inci, F., Demirci, U.: Advances in plasmonic technologies for point of care applications. Chem. Rev. 114(11), 5728–5752 (2014)

    Article  Google Scholar 

  37. Förster, T.: Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik. (1948)

    Google Scholar 

  38. Zadran, S., Standley, S., Wong, K., Otiniano, E., Amighi, A., Baudry, M.: Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics [Internet]. Applied Microbiology and Biotechnology. Appl. Microbiol. Biotechnol. 895–902 (2012) https://pubmed.ncbi.nlm.nih.gov/23053099/

  39. Zhang, X., Hu, Y., Yang, X., Tang, Y., Han, S., Kang, A., et al.: FÖrster resonance energy transfer (FRET)-based biosensors for biological applications [Internet]. Biosens. Bioelectron. (2019c). Elsevier Ltd, https://pubmed.ncbi.nlm.nih.gov/31096114/

  40. Hellenkamp, B., Schmid, S., Doroshenko, O., Opanasyuk, O., Kühnemuth, R., Rezaei Adariani, S., et al.: Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat. Methods (2018)

    Google Scholar 

  41. Sandbhor Gaikwad, P., Banerjee, R.: Advances in point-of-care diagnostic devices in cancers. Analyst (2018)

    Google Scholar 

  42. Zhang, J., Shikha, S., Mei, Q., Liu, J., Zhang, Y.: Fluorescent microbeads for point-of-care testing: a review. Microchim. Acta (2019b)

    Google Scholar 

  43. Qiu, X., Hildebrandt, N.: A clinical role for Förster resonance energy transfer in molecular diagnostics of disease [Internet]. Expert Rev. Mol Diagn. 767–771 (2019) Taylor and Francis Ltd, https://doi.org/10.1080/14737159.2019.1649144

  44. van der Fels-Klerx, H.J., van Asselt, E.D., Raley, M., Poulsen, M., Korsgaard, H., Bredsdorff, L., et al.: Critical review of methods for risk ranking of food-related hazards, based on risks for human health. Critical Rev. Food Sci Nutr. (2018)

    Google Scholar 

  45. Choi, J.R., Yong, K.W., Choi, J.Y., Cowie, A.C.: Emerging point-of-care technologies for food safety analysis. Sensors (Switzerland) (2019)

    Google Scholar 

  46. Morales-Narváez, E., Naghdi, T., Zor, E., Merkoçi, A.: Photoluminescent lateral-flow immunoassay revealed by graphene oxide: highly sensitive paper-based pathogen detection. Anal. Chem. (2015)

    Google Scholar 

  47. Zhang, Y., Zuo, P., Ye, B.C.: A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens. Bioelectron. (2015)

    Google Scholar 

  48. Mei, Q., Jing, H., Li, Y., Yisibashaer, W., Chen, J., Nan Li, B., et al.: Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens. Bioelectron. (2016)

    Google Scholar 

  49. Petryayeva, E., Algar, W.R.: Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal. Chem. (2014)

    Google Scholar 

  50. Mizutani, T., Kondo, T., Darmanin, S., Tsuda, M., Tanaka, S., Tobiume, M., et al.: A novel FRET-based biosensor for the measurement of BCR-ABL activity and its response to drugs in living cells. Clin. Cancer Res. 16(15), 3964–3975 (2010)

    Article  Google Scholar 

  51. Lu, S., Wang, Y.: Fluorescence resonance energy transfer biosensors for cancer detection and evaluation of drug efficacy. Clin. Cancer Res. (2010)

    Google Scholar 

  52. Carrascosa, L.G., Huertas, C.S., Lechuga, L.M.: Prospects of optical biosensors for emerging label-free RNA analysis. Trac, Trends Anal. Chem. (2016)

    Google Scholar 

  53. Ermini, M.L., Mariani, S., Scarano, S., Minunni, M.: Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors [Internet]. Biosens. Bioelectron. 28–37 (2014). Elsevier Ltd, https://pubmed.ncbi.nlm.nih.gov/24841091/

  54. González-Guerrero, A.B., Maldonado, J., Herranz, S., Lechuga, L.M.: Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics [Internet]. Anal. Methods. 8380–8394 (2016) Royal Society of Chemistry, https://pubs.rsc.org/en/content/articlehtml/2016/ay/c6ay02972h

  55. Huertas, C.S., Calvo-Lozano, O., Mitchell, A., Lechuga, L.M.: Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front. Chem. (2019b)

    Google Scholar 

  56. Ahn, H., Song, H., Choi, J.R., Kim, K.: A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches. Sensors (Switzerland) 18(1) (2018)

    Google Scholar 

  57. Harpaz, D., Koh, B., Marks, R.S., Seet, R.C.S., Abdulhalim, I., Tok, A.I.Y.: A functionalized gold chip with specific antibody. pp. 1–16, (2019)

    Google Scholar 

  58. Tang, Y., Zeng, X., Liang, J.: Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Edu. (2010)

    Google Scholar 

  59. Endo, T., Kerman, K., Nagatani, N., Takamura, Y., Tamiya, E.: Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal. Chem. [Internet]. 77(21), 6976–6984 (2005). American Chemical Society, https://doi.org/10.1021/ac0513459

  60. Mayer, K.M., Hafner, J.H.: Localized surface plasmon resonance sensors. Chem. Rev. (2011)

    Google Scholar 

  61. Park, K.H., Kim, S., Yang, S.M., Park, H.G.: Detection of DNA immobilization and hybridization on gold/silver nanostructures using localized surface plasmon resonance. J. Nanosci. Nanotechnol. [Internet]. 1374–1378 (2009) https://pubmed.ncbi.nlm.nih.gov/19441528/

  62. Roether, J., Chu, K.Y., Willenbacher, N., Shen, A.Q., Bhalla, N.: Real-time monitoring of DNA immobilization and detection of DNA polymerase activity by a microfluidic nanoplasmonic platform. Biosens. Bioelectron. (2019)

    Google Scholar 

  63. Bhalla N, Sathish S, Sinha A, Shen AQ. Large-Scale Nanophotonic Structures for Long-Term Monitoring of Cell Proliferation. Adv. Biosyst. [Internet]. 2(4), 1700258 (2018), Wiley, [cited 10 Nov 2020]. https://doi.org/10.1002/adbi.201700258

  64. Huang, C., Ye, J., Wang, S., Stakenborg, T., Lagae, L.: Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection. Appl. Phy. Lett. [Internet]. 100(17), 173114 (2012). American Institute of PhysicsAIP, https://doi.org/10.1063/1.4707382

  65. Schneider, T., Jahr, N., Jatschka, J., Csaki, A., Stranik, O., Fritzsche, W.: Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers. J. Nanopart. Res. [Internet]. 15(4), 1–10 (2013) Springer, https://doi.org/10.1007/s11051-013-1531-7

  66. Sun, L.L., Leo, Y.S., Zhou, X., Ng, W., Wong, T.I., Deng, J.: Localized surface plasmon resonance based point-of-care system for sepsis diagnosis. Mater. Sci. Energy Technol. 3, 274–281 (2020). Elsevier BV

    Google Scholar 

  67. Steiner, G.: Surface plasmon resonance imaging. Anal. Bioanal. Chem. [Internet]. Anal. Bioanal. Chem. [cited 10 Nov 2020], 379(3), 328–331 (2004). https://pubmed.ncbi.nlm.nih.gov/15127177/

  68. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species [Internet]. Chem. Rev. American Chemical Society. 462–493 (2008)  https://doi.org/10.1021/cr068107d

  69. Campbell, C.T., Kim, G.: SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials (2007)

    Google Scholar 

  70. Fu, E., Foley, J., Yager, P.: Wavelength-tunable surface plasmon resonance microscope. Rev. Sci. Instrum. [Internet]. 74(6):3182–3184 (2003). American Institute of Physics AIP, https://doi.org/10.1063/1.1574603

  71. Shumaker-Parry, J.S., Campbell, C.T.: Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem. [Internet]. American Chemical Society, Feb 15,76(4), 907–917 (2004) https://doi.org/10.1021/ac034962a

  72. Wang D, Loo JFC, Chen J, Yam Y, Chen SC, He H, et al. Recent advances in surface plasmon resonance imaging sensors. Sensors (Switzerland) (2019)

    Google Scholar 

  73. Jordan, C.E., Com, R.M.: Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces. Anal. Chem. (1997)

    Google Scholar 

  74. Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., Corn, R.M.: Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. (2001)

    Google Scholar 

  75. Wegner, G.J., Lee, H.J., Corn, R.M.: Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal. Chem. (2002)

    Google Scholar 

  76. Liu, Y., Liu, Q., Chen, S., Cheng, F., Wang. H., Peng, W.: Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. (2015b)

    Google Scholar 

  77. Ho, H.P., Huang, Y.H., Wu, S.Y., Kong, S.K.: Detecting phase shifts in surface plasmon resonance: a review. Adv. Opt. Technol. (2012)

    Google Scholar 

  78. Lee, K.H., Su, Y.D., Chen, S.J., Tseng, F.G., bin Lee, G.: Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens. Bioelectron. (2007)

    Google Scholar 

  79. Wang, D., Ding, L., Zhang, W., Luo, Z., Ou, H., Zhang, E., et al.: A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging. Measur. Sci. Technol. [Internet]. Institute of Physics Publishing, 2012 May 4, 23(6), 065701. https://doi.org/10.1088/0957-0233/23/6/065701

  80. Pilot, R., Signorini, R., Durante, C., Orian, L., Bhamidipati, M., Fabris, L.: A review on surface-enhanced Raman scattering. Biosensors (2019)

    Google Scholar 

  81. Huang, C.C., Cheng, C.Y., Lai, Y.S.: Paper-based flexible surface enhanced Raman scattering platforms and their applications to food safety. Trends. Food Sci. Technol. (2020)

    Google Scholar 

  82. Lee, C.H., Tian, L., Singamaneni, S.: Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl. Mater. Interfaces (2010)

    Google Scholar 

  83. Liu, X., Wang, J., Tang, L., Xie, L., Ying, Y.: Flexible plasmonic metasurfaces with user-designed patterns for molecular sensing and cryptography. Adv. Funct. Mater. (2016)

    Google Scholar 

  84. Park, M., Jung, H., Jeong, Y., Jeong, K.H.: Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano (2017)

    Google Scholar 

  85. Qiu, H., Wang, M., Jiang, S., Zhang, L., Yang, Z., Li, L., et al.: Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sens. Actuators B Chem. (2017)

    Google Scholar 

  86. Xu, K., Zhou, R., Takei, K., Hong, M.: Toward flexible surface-enhanced raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. (2019)

    Google Scholar 

  87. Martens, D., Bienstman, P.: Study on the limit of detection in MZI-based biosensor systems. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  88. Tian, L., Jiang, Q., Liu, K.K., Luan, J., Naik, R.R., Singamaneni, S.: Bacterial nanocellulose-based flexible surface enhanced raman scattering substrate. Adv. Mater. Interfaces (2016)

    Google Scholar 

  89. Rajan, Chand S, Gupta, B.D.: Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component-Naringin. Sens Actuators B Chem. (2006)

    Google Scholar 

  90. Sharma, A.K., Gupta, B.D.: On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt. Commun. (2005)

    Google Scholar 

  91. Zanchetta, G., Lanfranco, R., Giavazzi, F., Bellini, T., Buscaglia, M.: Emerging applications of label-free optical biosensors. Nanophotonics (2017)

    Google Scholar 

  92. Sharma, A.K., Gupta, B.D.: Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation. Sens. Actuators B Chem. (2004)

    Google Scholar 

  93. Slavík, R., Homola, J., Tyroký, J., Brynda, E.: Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuators B Chem. (2001)

    Google Scholar 

  94. Gupta, B.D., Verma, R.K.: Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens. (2009)

    Google Scholar 

  95. Liu, Q., Yuan, H., Liu, Y., Wang, J.: Real-time biodetection using a smartphone-based dual-color surface plasmon resonance sensor. J. Biomed. Opt. (2018)

    Google Scholar 

  96. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev Lett. (1987)

    Google Scholar 

  97. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. (1987)

    Google Scholar 

  98. Dinish, U.S., Fu, C.Y., Soh, K.S., Ramaswamy, B., Kumar, A., Olivo, M.: Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. (2012)

    Google Scholar 

  99. Dorfner, D., Zabel, T., Hürlimann, T., Hauke, N., Frandsen, L., Rant, U., et al.: Photonic crystal nanostructures for optical biosensing applications. Biosens. Bioelectron. (2009)

    Google Scholar 

  100. Scullion, M.G., di Falco, A., Krauss, T.F.: Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens. Bioelectron. (2011)

    Google Scholar 

  101. Zinoviev, K., Carrascosa, L.G., del Río, J.S., Sepúlveda, B., Domínguez, C., Lechuga, L.M.: Silicon photonic biosensors for lab-on-a-chip applications. Adv. Opt. Technol. (2008)

    Google Scholar 

  102. Scott, A., Florjańczyk, M., Cheben, P., Janz, S., Solheim, B., Xu, D.-X:. Micro-interferometer with high throughput for remote sensing. In: Dickensheets, D.L., Schenk, H., Piyawattanametha, W., (eds.) MOEMS and Miniaturized Systems VIII [Internet]. SPIE; 2009 p. 72080G. https://doi.org/10.1117/12.808271

  103. Liu, Q., Shin, Y., Kee, J.S., Kim, K.W., Mohamed Rafei, S.R., Perera, A.P., et al.: Mach-Zehnder interferometer (MZI) point-of-care system for rapid multiplexed detection of microRNAs in human urine specimens. Biosens. Bioelectron. (2015a)

    Google Scholar 

  104. Bastos, A.R., Vicente, C.M.S., Oliveira-Silva, R., Silva, N.J.O., Tacão, M., da Costa, J.P., et al.: Integrated optical Mach-Zehnder interferometer based on organic-inorganic hybrids for photonics-on-a-chip biosensing applications. Sensors (Switzerland) (2018)

    Google Scholar 

  105. Gauglitz, G.: Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal. Bioanal. Chem. (2020)

    Google Scholar 

  106. Kussrow, A., Enders, C.S., Bornhop, D.J.: Interferometric methods for label-free molecular interaction studies. Anal. Chem. (2012)

    Google Scholar 

  107. Liang, Y., Zhao, M., Wu, Z., Morthier, G.: Bimodal waveguide interferometer RI sensor fabricated on low-cost polymer platform. IEEE Photonics J. (2019)

    Google Scholar 

  108. Duval, D., González-Guerrero, A.B., Dante, S., Osmond, J., Monge, R., Fernández, L.J., et al.: Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab Chip (2012)

    Google Scholar 

  109. Herranz, S., Gavela, A.F., Lechuga, L.M.: Label-free biosensors based on bimodal waveguide (BiMW) interferometers. Methods Mol. Biol. (2017)

    Google Scholar 

  110. Zinoviev, K.E., González-Guerrero, A.B., Domínguez, C., Lechuga, L.M.: Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Lightwave Technol. (2011)

    Google Scholar 

  111. Konwar, A.N., Borse, V.: Current status of point-of-care diagnostic devices in the Indian healthcare system with an update on COVID-19 pandemic. Sens. Int. (2020b)

    Google Scholar 

  112. Zhang, C.Y., Yeh, H.C., Kuroki, M.T., Wang, T.H.: Single-quantum-dot-based DNA nanosensor. Nat. Mater. (2005)

    Google Scholar 

  113. Zeni, L., Perri, C., Cennamo, N., Arcadio, F., D’Agostino, G., Salmona, M., et al.: A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci. Rep. (2020)

    Google Scholar 

  114. Arunya Revathi, A., Rajeswari, D.: Surface plasmon resonance biosensor-based dual-core photonic crystal fiber: design and analysis. J. Opt. (India) [Internet]. 49(2), 163–167, (2020), Springer, https://doi.org/10.1007/s12596-020-00600-y

  115. Eom, H., Kim, J.H., Hur, J., Kim, T.S., Sung, S.K., Choi, J.H., et al.: Nanotextured polymer substrate for flexible and mechanically robust metal electrodes by nanoimprint lithography. ACS Appl. Mater. Interfaces (2015)

    Google Scholar 

  116. Jiang, J., Zou, S., Ma, L., Wang, S., Liao, J., Zhang, Z.: Surface-enhanced raman scattering detection of pesticide residues using transparent adhesive tapes and coated silver nanorods. ACS Appl. Mater. Interfaces (2018)

    Google Scholar 

  117. Mungroo, N.A., Neethirajan, S.: Biosensors for the detection of antibiotics in poultry industry-a Review. Biosensors (2014)

    Google Scholar 

  118. Shu, Y., Tian, H., Yang, Y., Li, C., Cui, Y., Mi, W., et al.: Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity. Nanoscale (2015)

    Google Scholar 

  119. Singh, J.P., Chu, H., Abell, J., Tripp, R.A., Zhao, Y.: Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, V.E., Ramadoss, A. (2022). Optical Biosensors Towards Point of Care Testing of Various Biochemicals. In: Joshi, S.N., Chandra, P. (eds) Advanced Micro- and Nano-manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-3645-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3645-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3644-8

  • Online ISBN: 978-981-16-3645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics