Skip to main content

Influence of Pulsating Flow on Thermal Characteristics in a Triangular Sharp-Edged Wavy Channel

  • Conference paper
  • First Online:
Advances in Thermofluids and Renewable Energy

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 741 Accesses

Abstract

The numerical study is focused on heat transfer enhancement of a triangular sharp-edged wavy channel using pulsating flow characteristics. The simulation has been performed using ANSYS 16.2 software to investigate the hydrodynamic and thermal characteristics of Newtonian fluids in two-dimensional wavy corrugated wall channels. Two different parameters such as horizontal pitch-to-module length ratio (b/L) and amplitude-to-wavelength ratio (a/λ) were considered, and their influences on heat transfer enhancement have been investigated. The dimensionless frequency of flow pulsation in the form of Strouhal number, St, have been studied at a range (St = 0, 0.25, 0.5, 0.75, 1.0). The study has been carried out for two different Reynolds numbers (Re = 100, 150) and Prandtl numbers (Pr = 4, 6.93). The results show that the role of the flow pulsation on heat transfer enhancement on the target surface is dependent on pulsation flow frequency and b/L ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aw:

Amplitude of the wavy wall

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

St:

Strouhal number

S b :

Profile of the bottom wavy wall

S t :

Profile of the top wavy wall

T :

Temperature

T in :

Inlet flow temperature

T w :

Wall temperature of wavy channel

U :

Velocity vector

b/L:

Horizontal pitch-to-module ratio

n :

Power law index

p :

Pressure

t :

Time

u :

X-direction velocity

u avg :

Average inlet velocity

u in :

Inlet velocity

v :

Y-direction velocity

References

  1. Goldstein, L., Jr., & Sparrow, E. M. (1977). Heat/mass characteristics for flow in a corrugated wall channel. Journal of Heat Transfer, 99, 187–195.

    Article  Google Scholar 

  2. O’ Brien, J. E., & Sparrow, E. M. (1982). Corrugated-duct heat transfer, pressure drop and flow visualization. ASME Journal of Heat Transfer, 104, 410–416.

    Article  Google Scholar 

  3. Sparrow, E. M., & Comb, J. W. (1983). Effect of interval spacing and fluid flow inlet conditions on a corrugated-wall heat exchanger. International Journal of Heat and Mass Transfer, 26, 993–1004.

    Article  Google Scholar 

  4. Saniei, N., & Dini, S. (1993). Heat transfer characteristics in a wavy wall channel. ASME Journal of Heat Transfer, 115, 788–792.

    Article  Google Scholar 

  5. Wang, G., & Vanka, S. P. (1995). Convective heat transfer in periodic wavy passages. International Journal of Heat and Mass Transfer, 38, 3219–3230.

    Article  MATH  Google Scholar 

  6. Wang, C. C., & Chen, C. K. (2002). Forced convection in a wavy-wall channel. International Journal of Heat and Mass Transfer, 45, 2587–2595.

    Article  MATH  Google Scholar 

  7. Fabbri, G. (2000). Heat transfer optimization in corrugated wall channels. International Journal of Heat and Mass Transfer, 43, 4299–4310.

    Article  MATH  Google Scholar 

  8. Rush, T. A., Newell, T. A., & Jacobi, A. M. (1999). An experimental study of flow and heat transfer in sinusoidal wavy passages. International Journal of Heat and Mass Transfer, 42, 1541–1553.

    Article  Google Scholar 

  9. Mohammed, H. A., Abed, A. M., & Wahid, M. A. (2013). The effects of geometrical parameters of a corrugated channel with in out-of-phase arrangement. International Communications in Heat and Mass Transfer, 40, 47–57.

    Article  Google Scholar 

  10. Hossain M. Z., & Islam, A. K. M. S. (2004). Numerical investigation of unsteady flow and heat transfer in wavy channels. In: 15th Australasian Fluid Mechanics Conference, the University of Sydney, Australia, December 13–17.

    Google Scholar 

  11. Bahaidarah, H. M., Anand, N. K., & Chen, H. C. (2005). Numerical study of fluid flow and heat transfer over a bank of flat tubes. Numerical Heat Transfer A, 48, 359–385.

    Article  Google Scholar 

  12. Niceno, B., & Nobile, E. (2001). Numerical analysis of fluid flow and heat transfer in periodic wavy channels. International Journal of Heat and Fluid Flow, 22, 156–167.

    Article  Google Scholar 

  13. Piao, Y., Hauptmann, E. G., & Iqbal, M. (1994). Forced convective heat transfer in cross-corrugated solar air heaters. Journal of Solar Energy Engineering, 116, 212–214.

    Article  Google Scholar 

  14. Snyder, B., Li, K. T., & Wirtz, R. A. (1999). Heat transfer enhancement in a serpentine channel. International Journal of Heat and Mass Transfer, 36, 2965–2916.

    Article  Google Scholar 

  15. Zhang, G., Tian, M., & Zhou, S. (2006). Simulation and analysis of flow pattern in cross-corrugated plate heat exchangers. Journal of Hydrodynamics, Ser. B, 18, 547–551.

    Article  MATH  Google Scholar 

  16. Naphon, P. (2008). Effect of corrugated plates in an in-phase arrangement on the heat transfer and flow developments. International Journal of Heat and Mass Transfer, 51, 3963–3971.

    Article  MATH  Google Scholar 

  17. Nishandar, S. V., & Yadav, R. H. (2015). Experimental investigation of heat transfer characteristics of pulsating turbulent flow in a pipe. International Research Journal of Engineering and Technology, 02, 487–492.

    Google Scholar 

  18. Sorour, M. M., & Estafanous, S. F. (1988). Heat transfer between two parallel plates with laminar pulsating flow. International Journal Energy Research, 12, 11–21.

    Article  Google Scholar 

  19. Ali, A. H. H., & Hanaoka, Y. (2002). Experimental study on laminar flow forced-convection in a channel with upper V-corrugated plate heated by radiation. International Journal of Heat and Mass Transfer, 45, 2107–2117.

    Article  Google Scholar 

  20. Ozbolat, V., Tokgoz, N., & Sahin, B. (2013). Flow characteristics and heat transfer enhancement in 2D corrugated channels. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7, 2074–2078.

    Google Scholar 

  21. Carpinlioglu, M., & Gündogdu, M. Y. (2001). A critical review on pulsatile pipe flow studies directing towards future research topics. Flow Measurement and Instrumentation, 12, 163–174.

    Article  Google Scholar 

  22. Chattopadhyay, H., Durst, F., & Ray, S. (2006). Analysis of heat transfer in simultaneously developing pulsating laminar flow in a pipe with constant wall temperature. International Communications in Heat and Mass Transfer, 33, 475–481.

    Article  Google Scholar 

  23. Moschandreou, T., & Zamir, M. (1997). Heat transfer in a tube with pulsating flow and constant heat flux. International Journal of Heat and Mass Transfer, 40, 2461–2466.

    Article  MATH  Google Scholar 

  24. Rahgoshay, M., Ranjbar, A. A., & Ramiar, A. (2012). Laminar pulsating flow of nanofluids in a circular tube with isothermal wall. International Communications in Heat and Mass Transfer, 39, 463–469.

    Article  Google Scholar 

  25. Hemida, H. N., Sabry, M. N., Abdel-Rahim, A., & Mansour, H. (2002). Theoretical analysis of heat transfer in laminar pulsating flow. International Journal of Heat and Mass Transfer, 45, 1767–1780.

    Article  MATH  Google Scholar 

  26. He, Y.-L., WeiWei, Y., Zhao, C.-F., & Tao, W.-Q. (2005). Numerical study of enhancing heat transfer by pulsating flow. Journal of Engineering Thermophysics, 3, 041.

    Google Scholar 

  27. Kurzweg, U. H. (1985). Enhanced heat conduction in oscillating viscous flows within parallel-plate channels. ASME Journal Fluid Mechanics, 156, 291–300.

    Article  MATH  Google Scholar 

  28. Jafari, M., Farhadi, M., & Kurosh, S. (2013). Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach. International Communications in Heat and Mass Transfer, 45, 146–154.

    Article  Google Scholar 

  29. Nield, D. A., & Kuznetsov, A. V. (2007). Forced convection with laminar pulsating flow in a channel or tube. International Journal of Thermal Sciences, 46, 551–560.

    Article  Google Scholar 

  30. Scotti, A., & Ugo, P. (2001). Numerical simulation of pulsating turbulent channel flow. Physics of Fluids, 13, 1367–1384.

    Article  MATH  Google Scholar 

  31. Tutty, O. R. (1992). Pulsatile Flow in a Constricted Channel. Journal of Biomechanical Engineering, 114, 50–54.

    Article  Google Scholar 

  32. Kim, S. Y., Byung, H. K., & Jae, M. H. (1993). Heat transfer in the thermally developing region of a pulsating channel flow. International Journal of Heat and Mass Transfer, 36, 4257–4266.

    Article  MATH  Google Scholar 

  33. Metwally, H. M., & Manglik, R. M. (2000). Numerical solutions for periodically-developed laminar flow and heat transfer in sinusoidal corrugated plate channels with constant wall temperature. In: Proceedings of Heat Transfer Conference ASME, NewYork.

    Google Scholar 

  34. Mehta, B., & Khandekar, S. (2015). Local experimental heat transfer of single-phase pulsating laminar flow in a square mini-channel. International Journal Thermal Sciences, 91, 157–166.

    Article  Google Scholar 

  35. Xie, G., et al. (2006). Heat transfer enhancement inside converging-diverging wavy channel by pulsating flow. Journal Chemical Engineering of Chinese Universities, 20, 31–35.

    Google Scholar 

  36. Nishimura, T., Yoshino, T., & Kawamura, Y. (1987). Numerical flow analysis of pulsatile flow in a channel with symmetric wavy walls at moderate Reynolds numbers. Journal Chemical Engineering of Japan, 20, 479–485.

    Article  Google Scholar 

  37. Jin, D. X., Lee, Y. P., & Lee, D.-Y. (2007). Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel. International Journal of Heat and Mass Transfer, 50, 3062–3071.

    Article  MATH  Google Scholar 

  38. Bai, J., Pan, J., He, X., Wang, K., Tang, L., & Yang, R. (2020). Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer. Applied Thermal Engineering, 175, 115379.

    Google Scholar 

  39. Shi, X., Wang, Y., Huai, X., & Cheng, K. (2020). Influence of structure parameters on entropy generation performance in cross wavy channels with fluid-solid coupled heat transfer. Applied Thermal Engineering, 181, 115882.

    Google Scholar 

  40. Wen, Z. X., Lv, Y. G., Li, Q., & Zhou, P. (2020). Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters. International Journal of Heat and Mass Transfer, 147, 118922.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Dev, K., Kumar, R., Sen, P., Sen, D. (2022). Influence of Pulsating Flow on Thermal Characteristics in a Triangular Sharp-Edged Wavy Channel. In: Mahanta, P., Kalita, P., Paul, A., Banerjee, A. (eds) Advances in Thermofluids and Renewable Energy . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3497-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3497-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3496-3

  • Online ISBN: 978-981-16-3497-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics