Skip to main content

Pathogenesis of Thrombosed Giant Aneurysm

  • Chapter
  • First Online:
Recent Progress in the Management of Cerebrovascular Diseases
  • 402 Accesses

Abstract

Large and giant aneurysms account for up to 5% of all intracranial aneurysms approximately. They often present during the fifth to seventh decades and have a female predominance. Unlike small aneurysms which often present with subarachnoid hemorrhage (SAH), giant aneurysms often present with symptoms of mass effect, ischemia [1]. Ischemia is mostly due to the development of thromboembolism. Approximately 17–33% of giant aneurysms were thrombotic. Though many cases follow mild and calm progression for long periods, some have rapid progression to large sizes [1, 2]. The risk of rupture of these giant aneurysms is approximately 50% in 5 years according to the International Study of Unruptured Intracranial Aneurysms (ISUIA) trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malaspinas O, Turjman A. Ribeiro de Sousa D, et al. a spatio-temporal model for spontaneous thrombus formation in cerebral aneurysms. J Theor Biol. 2016;394:68–76. https://doi.org/10.1016/j.jtbi.2015.12.022.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen JE, Yitshayek E, Gomori JM, et al. Spontaneous thrombosis of cerebral aneurysms presenting with ischemic stroke. J Neurol Sci. 2007;254(1–2):95–8. https://doi.org/10.1016/j.jns.2006.12.008.

    Article  PubMed  Google Scholar 

  3. Whittle IR, Dorsch NW, Besser M. Spontaneous thrombosis in giant intracranial aneurysms. J Neurol Neurosurg Psychiatry. 1982;45(11):1040–7. https://doi.org/10.1136/jnnp.45.11.1040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chung I, Lip GYH. Virchow’ s triad revisited: blood constituents; 2004, pp. 449–454.

    Google Scholar 

  5. Suzuki H, Mikami T, Tamada T, et al. Inflammation promotes progression of thrombi in intracranial thrombotic aneurysms. Neurosurg Rev. 2019; https://doi.org/10.1007/s10143-019-01184-3.

  6. Fogelson AL, Neeves KB. Fluid mechanics of blood clot formation. Annu Rev Fluid Mech. 2015;47(1):377–403. https://doi.org/10.1146/annurev-fluid-010814-014513.

    Article  PubMed  Google Scholar 

  7. Hashimoto T, Meng H, Young WL. Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res. 2006;28(4):372–80. https://doi.org/10.1179/016164106X14973.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mizutani T, Goldberg HI, Parr J, Harper C, Thompson CJ. Cerebral dissecting aneurysm and intimal fibroelastic thickening of cerebral arteries. Case report. J Neurosurg. 1982;56(4):571–6. https://doi.org/10.3171/jns.1982.56.4.0571.

    Article  PubMed  CAS  Google Scholar 

  9. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms: a comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999; https://doi.org/10.1161/01.STR.30.7.1396.

  10. Tulamo R, Frösen J, Hernesniemi J, Niemelä M. Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg. 2010;2(2):120–30. https://doi.org/10.1136/jnis.2009.002055.

    Article  PubMed  Google Scholar 

  11. Signorelli F, Sela S, Gesualdo L, et al. Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: a systematic review. World Neurosurg. 2018;115 https://doi.org/10.1016/j.wneu.2018.04.143.

  12. Krings T, Piske RL, Lasjaunias PL. Intracranial arterial aneurysm vasculopathies: targeting the outer vessel wall. Neuroradiology. 2005;47(12):931–7. https://doi.org/10.1007/s00234-005-1438-9.

    Article  PubMed  Google Scholar 

  13. Krings T, Lasjaunias PL, Geibprasert S, Pereira V, Hans FJ. The aneurysmal wall. The key to a subclassification of intracranial arterial aneurysm vasculopathies? Interv Neuroradiol. 2008;14(SUPPL. 1):39–47. https://doi.org/10.1177/15910199080140S107.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devareddy, G. (2021). Pathogenesis of Thrombosed Giant Aneurysm. In: Kato, Y., Zhang, X., Dai, J., Ansari, A. (eds) Recent Progress in the Management of Cerebrovascular Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-3387-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3387-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3386-7

  • Online ISBN: 978-981-16-3387-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics