Skip to main content

Bionic Sensors Technologies in Food

  • Chapter
  • First Online:
Advanced Nondestructive Detection Technologies in Food

Abstract

Generally, people may use color, aroma, and taste to describe the quality of food. “Color” refers to the vision seen by the eyes, “scent” refers to the smell of the nose, and “taste” refers to the taste of the tongue. The quality evaluation of flavored food usually involves the use of vision, smell, taste, and other sensory organs. Comprehensive sensory evaluation was also frequently used to analyze, evaluate, and judge the color, aroma, taste, and style characteristics of food [1, 2]. Taste accounts for a relatively high proportion, while color and other aspects also take up a certain proportion. Although artificial sensory evaluation is the most commonly used quality evaluation method for flavored foods such as wine and tea, it has many limitations. First of all, even with well-trained senior evaluation experts, the sensory organ’s sensitivity may be easily affected by factors such as experience, gender, age, mental state, physical condition, and geographical environment, thereby affecting the accuracy and stability of sensory evaluation results. Second, with a certain degree of subjectivity, artificial sensory organs are prone to fatigue after continuous stimulation for a period of time, and then become dull, and can only recover after a period of rest [3–5]. Figure 3.1 illustrates three types of bionic sensor detection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ai Y, Lou Z, Chen S et al (2017) All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35:121–127

    Article  CAS  Google Scholar 

  2. Cai G, Wang J, Lin M et al (2017) A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Mater 9(10):e437–e437

    Article  CAS  Google Scholar 

  3. Cao A, Wang J, Pang H et al (2018) Design and fabrication of a multifocal bionic compound eye for imaging. Bioinspir Biomim 13(2):026012

    Article  PubMed  CAS  Google Scholar 

  4. Chang L, Liu Y, Yang Q et al (2018) Ionic electroactive polymers used in bionic robots: a review. J Bion Eng 15(5):765–782

    Article  Google Scholar 

  5. Chang Z, Sun Y, Zhang Y et al (2018) Bionic optimization design of electronic nose chamber for oil and gas detection. J Bion Eng 15(3):533–544

    Article  Google Scholar 

  6. Chen BD, Tang W, He C et al (2018) Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater Today 21(1):88–97

    Article  CAS  Google Scholar 

  7. Chen C, Wang C, Wang Y et al (2017) Fuzzy logic controller design for intelligent robots. Math Probl Eng 2017:1–12

    Google Scholar 

  8. Chen J, Chen B, Han K et al (2019) A triboelectric nanogenerator as a self‐powered sensor for a soft–rigid hybrid actuator. Adv Mater Technol 4(9):1900337

    Article  CAS  Google Scholar 

  9. Chen T, Wei S, Cheng Z et al (2020) Specific detection of monosaccharide by dual-channel sensing platform based on dual catalytic system constructed by bio-enzyme and bionic enzyme using molecular imprinting polymers. Sensors Actuators B Chem 320:128430

    Article  CAS  Google Scholar 

  10. Chen X, Lin X, Mo D et al (2020) High-sensitivity, fast-response flexible pressure sensor for electronic skin using direct writing printing. RSC Adv 10(44):26188–26196

    Article  CAS  Google Scholar 

  11. Deng H, Zhong G, Li X et al (2017) Slippage and deformation preventive control of bionic prosthetic hands. IEEE/ASME Trans Mechatron 22(2):888–897

    Article  Google Scholar 

  12. Ding L, Wang Y, Sun C et al (2020) Three-dimensional structured dual-mode flexible sensors for highly sensitive tactile perception and noncontact sensing. ACS Appl Mater Interfaces 12(18):20955–20964

    Article  CAS  PubMed  Google Scholar 

  13. Du T, Li X, Wang Y et al (2019) Multiple disturbance analysis and calibration of an inspired polarization sensor. IEEE Access 7:58507–58518

    Article  Google Scholar 

  14. Du W, Yang Y, Liu L (2020) Research on the recognition performance of bionic sensors based on active electrolocation for different materials. Sensors (Basel) 20(16):4608

    Article  Google Scholar 

  15. Ferri S, Sode K (2012) Biomolecular engineering of biosensing molecules—the challenges in creating sensing molecules for glycated protein biosensing—. Electrochemistry 80(5):293–298

    Article  CAS  Google Scholar 

  16. Guo SZ, Qiu K, Meng F et al (2017) 3D printed stretchable tactile sensors. Adv Mater 29(27):1701218

    Article  CAS  Google Scholar 

  17. Guo X, Yang J, Du T et al (2019) An autonomous navigation system integrated with air data and bionic polarization information. Trans Inst Meas Control 41(13):3679–3687

    Article  Google Scholar 

  18. Guo Z, Guo C, Chen Q et al (2020) Classification for penicillium expansum spoilage and defect in apples by electronic nose combined with chemometrics. Sensors (Basel) 20(7):2130

    Article  Google Scholar 

  19. Gupta S, Kumar A (2018) Bionic functionality of prosthetic hand, intelligent communication. In: Control devices, pp 1177–1190

    Google Scholar 

  20. Han S, Zhao J, Wang D et al (2017) Bionic ion channel and single-ion conductor design for artificial skin sensors. J Mater Chem B 5(34):7126–7132

    Article  CAS  PubMed  Google Scholar 

  21. Hao Q, Wang Z, Cao J et al (2018) A hybrid bionic image sensor achieving FOV extension and foveated imaging. Sensors (Basel) 18(4):1042

    Article  Google Scholar 

  22. Haruyama T (2006) Cellular biosensing: chemical and genetic approaches. Anal Chim Acta 568(1–2):211–216

    Article  CAS  PubMed  Google Scholar 

  23. Hu G-D, He C-L, Li H-Y et al (2018) Test on stress distribution of bionic C-leg wheel-soil interaction with its data processing. IOP Conf Ser Mater Sci Eng 428:012010

    Article  Google Scholar 

  24. Hu Y, Li Z, Li G et al (2016) Development of sensory-motor fusion-based manipulation and grasping control for a robotic hand-eye system. IEEE Trans Syst Man Cybernet Syst 47:1169–1180

    CAS  Google Scholar 

  25. Huang H, Han L, Fu X et al (2020) Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv Electron Mater 6(7):2000239

    Article  CAS  Google Scholar 

  26. Jiang B (2020) Research on wireless sensor location technology for biologic signal measuring based on intelligent bionic algorithm. Peer Peer Netw Appl

    Google Scholar 

  27. Jiang C, Li Q, Sun N et al (2020) A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system. Nano Energy 77:105120

    Article  CAS  Google Scholar 

  28. Jiang J, Sun Z, Duan F et al (2018) Disguised bionic sonar signal waveform design with its possible camouflage application strategy for underwater sensor platforms. IEEE Sensors J 18(20):8436–8449

    Google Scholar 

  29. Li H, Ren Y, Zhang G et al (2019) Design of a high SNR electronic heart sound sensor based on a MEMS bionic hydrophone. AIP Adv 9(1):015005

    Article  Google Scholar 

  30. Li J, Zhou X, Liu Z (2020) Recent advances in photoactuators and their applications in intelligent bionic movements. Adv Opt Mater 8(18):2000886

    Article  CAS  Google Scholar 

  31. Li X, Jiang C, Zhao F et al (2020) A self-charging device with bionic self-cleaning interface for energy harvesting. Nano Energy 73:104738

    Article  CAS  Google Scholar 

  32. Liao X, Song W, Zhang X et al (2020) A bioinspired analogous nerve towards artificial intelligence. Nat Commun 11(1):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao X, Wang W, Wang L et al (2021) A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces. Nano Energy 80:105548

    Article  CAS  Google Scholar 

  34. Lindau ST, Bensmaia SJ (2020) Using bionics to restore sensation to reconstructed breasts. Front Neurorobot 14:24

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu F, Wang K, Liu Y et al (2019) A bionic vibration source localization device inspired by the hunting localization mechanism of scorpions. J Bion Eng 16(6):1019–1029

    Article  Google Scholar 

  36. Liu G, Wang M, Xu L et al (2020) A new bionic lateral line system applied to pitch motion parameters perception for autonomous underwater vehicles. Appl Ocean Res 99:102142

    Article  Google Scholar 

  37. Liu J, Cui Y, Chen Y et al (2018) Evaluation of food fineness by the bionic tongue distributed mechanical testing device. Sensors (Basel) 18(12):4250

    Article  Google Scholar 

  38. Liu Y, Zhu Y, Liu J et al (2018) Design of bionic cochlear basilar membrane acoustic sensor for frequency selectivity based on film triboelectric nanogenerator. Nanoscale Res Lett 13(1):191

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lü X-Z (2017) A multi-scale flexible tactile-pressure sensor. In: Wearable sensors and robots, pp 49–54

    Chapter  Google Scholar 

  40. Magee EG, Ourselin S, Nikitichev D et al (2017) The bionic clicker Mark I & II. J Vis Exp (126):55705

    Google Scholar 

  41. Miao Y, Xu M, Yu J et al (2021) Conductive cold-resistant and elastic hydrogel: a potential bionic skin for human-machine interaction control over artificial limbs. Sensors Actuators B Chem 327:128916

    Article  CAS  Google Scholar 

  42. Michelini E, Cevenini L, Mezzanotte L et al (2010) Bioluminescent genetically engineered cells for biosensing applications. J Biotechnol 150:194–194

    Article  Google Scholar 

  43. Moore P (2017) Review. Dawn Nafus (ed.), Quantified: biosensing technologies in everyday life. Theor Cult Soc 34(7–8):269–275

    Article  Google Scholar 

  44. Nie P, Wang R, Xu X et al (2017) High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl Mater Interfaces 9(17):14911–14919

    Article  CAS  PubMed  Google Scholar 

  45. Ouyang Q, Yang Y, Wu J et al (2020) Measurement of total free amino acids content in black tea using electronic tongue technology coupled with chemometrics. LWT Food Sci Technol 118:108768

    Article  CAS  Google Scholar 

  46. Ouyang Q, Yang Y, Wu J et al (2019) Rapid sensing of total theaflavins content in black tea using a portable electronic tongue system coupled to efficient variables selection algorithms. J Food Compos Anal 75:43–48

    Article  CAS  Google Scholar 

  47. Pagaduan JV, Bhatta A, Romer LH et al (2018) 3D hybrid small scale devices. Small 14(27):e1702497

    Article  PubMed  CAS  Google Scholar 

  48. Pan JY, Lin CC, Wu CJ et al (2016) Early and intermediate-term results of the extracardiac conduit total cavopulmonary connection for functional single-ventricle hearts. J Formos Med Assoc 115(5):318–324

    Article  PubMed  Google Scholar 

  49. Patil AC, Xiong Z, Thakor NV et al (2020) Toward nontransient silk bioelectronics: engineering silk fibroin for bionic links. Small Methods 4(10):2000274

    Article  CAS  Google Scholar 

  50. Peng S, Wu S, Yu Y et al (2020) Multimodal capacitive and piezoresistive sensor for simultaneous measurement of multiple forces. ACS Appl Mater Interfaces 12(19):22179–22190

    Article  CAS  PubMed  Google Scholar 

  51. Preechaburana P, Suska A, Filippini D (2014) Biosensing with cell phones. Trends Biotechnol 32(7):351–355

    Article  CAS  PubMed  Google Scholar 

  52. Qian C, Li X, Zhu J et al (2019) A bionic manipulator based on multi-sensor data fusion. Integr Ferroelectr 192(1):10–15

    Article  CAS  Google Scholar 

  53. Su K, Qiu X, Fang J et al (2017) An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system—bionic e-eye. Sensors Actuators B Chem 238:1165–1172

    Article  CAS  Google Scholar 

  54. Syed Mubarak Ali SAA, Ahmad NS, Goh P (2019) Flex sensor compensator via Hammerstein-Wiener modeling approach for improved dynamic goniometry and constrained control of a bionic hand. Sensors (Basel) 19(18):3896

    Article  Google Scholar 

  55. Syu Y-C, Hsu W-E, Lin C-T (2018) Review—field-effect transistor biosensing: devices and clinical applications, ECS. J Solid State Sci Technol 7(7):Q3196–Q3207

    Article  CAS  Google Scholar 

  56. Tang W, Zhang K, Jiang D (2017) Physarum-inspired routing protocol for energy harvesting wireless sensor networks. Telecommun Syst 67(4):745–762

    Article  Google Scholar 

  57. Tavakoli M, Lopes P, Lourenco J et al (2017) Autonomous selection of closing posture of a robotic hand through embodied soft matter capacitive sensors. IEEE Sensors J 17(17):5669–5677

    Article  Google Scholar 

  58. Ulusan H, Muhtaroglu A, Kulah H (2019) A sub-500 μW interface electronics for bionic ears. IEEE Access 7:132140–132152

    Article  Google Scholar 

  59. Wan Y, Han Z, Zhong J et al (2018) Pattern recognition and bionic manipulator driving by surface electromyography signals using convolutional neural network. Int J Adv Robot Syst 15(5)

    Google Scholar 

  60. Wang C, Sun Z, Long J et al (2020) Development of a novel massage platform for medical training. Technol Health Care 28(S1):89–101

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang F, Ren Z, Nie J et al (2019) Self‐powered sensor based on bionic antennae arrays and triboelectric nanogenerator for identifying noncontact motions. Adv Mater Technol 5(1):1900789

    Article  Google Scholar 

  62. Wang J, Suzuki R, Shao M et al (2019) Capacitive pressure sensor with wide-range, bendable, and high sensitivity based on the bionic Komochi Konbu structure and Cu/Ni nanofiber network. ACS Appl Mater Interfaces 11(12):11928–11935

    Article  CAS  PubMed  Google Scholar 

  63. Wang J, Tenjimbayashi M, Tokura Y et al (2018) Bionic fish-scale surface structures fabricated via air/water interface for flexible and ultrasensitive pressure sensors. ACS Appl Mater Interfaces 10(36):30689–30697

    Article  CAS  PubMed  Google Scholar 

  64. Wang Q, Yu P, Bai L et al (2017) Self-assembled nano-leaf/vein bionic structure of TiO2/MoS2 composites for photoelectric sensors. Nanoscale 9(46):18194–18201

    Article  CAS  PubMed  Google Scholar 

  65. Wang S, Qu C, Liu L et al (2019) Rhinophore bio-inspired stretchable and programmable electrochemical sensor. Biosens Bioelectron 142:111519

    Article  CAS  PubMed  Google Scholar 

  66. Wang X, Wang H, Cai Y et al (2017) Research on a beef tenderness detection method using a bionic mastication system based on a pressure sensor. Anal Methods 9(32):4695–4701

    Article  Google Scholar 

  67. Wang Y, Wang H, Wang H et al (2019) Calcium gluconate derived carbon nanosheet intrinsically decorated with nanopapillae for multifunctional printed flexible electronics. ACS Appl Mater Interfaces 11(22):20272–20280

    Article  CAS  PubMed  Google Scholar 

  68. Wei Y, Li S, Zhang X et al (2020) Smart devices based on the soft actuator with nafion-polypropylene-PDMS/graphite multilayer structure. Appl Sci 10(5):1829

    Article  CAS  Google Scholar 

  69. Wen H-Y, Liu Y-C, Chiang C-C et al (2020) The use of doped conductive bionic muscle nanofibers in a tennis racket–shaped optical fiber humidity sensor. Sensors Actuators B Chem 320:128340

    Article  CAS  Google Scholar 

  70. Yang B, Zhang T, Liang Z et al (2019) Research on an artificial lateral line system based on a bionic hair sensor with resonant readout. Micromachines (Basel) 10(11):736

    Article  Google Scholar 

  71. Yang J, Du T, Niu B et al (2018) A bionic polarization navigation sensor based on polarizing beam splitter. IEEE Access 6:11472–11481

    Article  Google Scholar 

  72. Yue Z, Ye X, Liu S et al (2019) Towards ultra-wide operation range and high sensitivity: graphene film based pressure sensors for fingertips. Biosens Bioelectron 139:111296

    Article  CAS  PubMed  Google Scholar 

  73. Zhang C (2019) Simulation analysis of bionic robot fish based on MFC materials. Math Probl Eng 2019:1–9

    Google Scholar 

  74. Zhang C, Dai K, Liu D et al (2020) Ultralow quiescent power-consumption wake-up technology based on the bionic triboelectric nanogenerator. Adv Sci (Weinh) 7(12):2000254

    Article  Google Scholar 

  75. Zhang X, Xu Q, Zhang G et al (2018) Design and analysis of a multiple sensor units vector hydrophone. AIP Adv 8(8):085124

    Article  Google Scholar 

  76. Zhou L, He X, He D et al (2011) Biosensing technologies for Mycobacterium tuberculosis detection: status and new developments. Clin Dev Immunol 2011:193963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zou Y, Tan P, Shi B et al (2019) A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat Commun 10(1):2695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Q., Lin, H., Zhao, J. (2021). Bionic Sensors Technologies in Food. In: Advanced Nondestructive Detection Technologies in Food. Springer, Singapore. https://doi.org/10.1007/978-981-16-3360-7_3

Download citation

Publish with us

Policies and ethics