Skip to main content

A Study of Fluid-Structure Interaction of Unsteady Flow in the Blood Vessel Using Finite Element Method

  • Conference paper
  • First Online:
Modern Mechanics and Applications

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1960 Accesses

Abstract

The paper presents a numerical simulation for fluid-structure interaction (FSI) of unsteady blood flow interacting with the vessel wall. The present work aims to provide a simple approach for very large deformation of the wall. The implementation of the method is straightforward and can be employed for a large scale problem with a cheap computational cost. The classical finite element discretization is adopted both for fluid and solid domains on tetrahedral elements. The monolithic scheme is used for the strong coupling of fluid and structure to satisfy kinematic and dynamic equilibrium conditions at the interface. The Navier-Stokes equations of an incompressible flow are solved by using the integrated method based on the Arbitrary Lagrangian-Eulerian (ALE) formula for the moving grid, and the total Lagrangian formulation is used for the non-linear hyper-elastic material of the vessel wall with the Mooney-Rivlin material model adopted as a constitutive equation for the solid domain. The numerical solutions for the FSI of blood vessel problem are quite similar to the experimental data. After validation the code, two problems of the blood vessel walls are considered: The carotid bifurcation and the aortic valve problems. The simulation results can be used for predicting the risk of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeannette, H.S., Johan, J., Niclas, J., Johan, H.: 3D fluid-structure interaction simulation of aortic valves using a unified continuum ALE FEM model. Front. Physiol. 9, 363 (2018)

    Google Scholar 

  2. Ha, S.T., Choi, H.G.: Investigation on the effect of density ratio on the convergence behavior of partitioned method for fluid–structure interaction simulation. J. Fluids Struct. 96, 103050 (2020)

    Article  Google Scholar 

  3. Ha, S.T., Ngo, L.C., Saeed, M., Jeon, B.J., Choi, H.G.: A comparative study between partitioned and monolithic methods for the problems with 3D fluid–structure interaction of blood vessels. J. Mech. Sci. Technol. 31, 281–287 (2017)

    Article  Google Scholar 

  4. Kang, S., Choi, H.G., Yoo, J.Y.: Investigation of fluid–structure interactions using a velocity-linked P2/P1 finite element method and the generalized-α method. Internat. J. Numer. Methods Eng. 90, 1529–1548 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ha, S.T., Choi, H.G.: Simulation of the motion of a carotid artery interacting with blood flow by using a partitioned semi-implicit algorithm. Korean Soc. Comput. Fluids Eng. (2019)

    Google Scholar 

  6. Vu, T.H., Phung, V.P., Nguyen, X.H., Wahab, M.A.: A polytree-based adaptive polygonal finite element method for topology optimization of fluid-submerged breakwater interaction. Comput. Math. Appl. 76(5), 1198–1218 (2018)

    Article  MathSciNet  Google Scholar 

  7. Yao, J., Liu, G.R., Narmoneva, D.A., Hinton, R.B., Zhang, Z.Q.: Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput. Mech. 50(6), 789–804 (2012)

    Article  MathSciNet  Google Scholar 

  8. Vu, T.H., Le, T.C., Nguyen, X.H., Abdel, M.A.: An equal-order mixed polygonal finite element for two-dimensional incompressible stokes flows. Eur. J. Mech.-B/Fluids 79, 92–108 (2020)

    Article  MathSciNet  Google Scholar 

  9. Vu, T.H., Le, T.C., Nguyen, X.H., Abdel, M.A.: A high-order mixed polygonal finite element for incompressible Stokes flow analysis. Comput. Methods Appl. Mech. Eng. 356, 175–198 (2019)

    Article  MathSciNet  Google Scholar 

  10. Holzapfel, G.A.: Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37, 489–490 (2002)

    Article  Google Scholar 

  11. Nobuko, K., Joji, A., Chen, X., Hisada, T.: Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J. Biomech. Eng. 129(3), 374–385 (2007)

    Article  Google Scholar 

  12. Eken, A., Sahin, M.: A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems. Int. J. Numer. Methods Fluids 80, 687–714 (2016)

    Article  MathSciNet  Google Scholar 

  13. Yeom, E., Nam, K.H., Jin, C., Paeng, D.G., Lee, S.J.: 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images. Ultrasonics 54(8), 2184–2192 (2014)

    Article  Google Scholar 

  14. Jingliang, D., Zhonghua, S., Kiao, I., Jiyuan, T.: Fluid–structure interaction analysis of the left coronary artery with variable angulation. Comput. Methods Biomech. Biomed. Engin. 18(14), 1500–1508 (2015)

    Article  Google Scholar 

  15. Ha, S.T.: Development of a new geometric multi-grid finite element method and a semi-implicit partitioned algorithm for fluid-structure interaction simulation. Ph.D. Dissertation, Seoultech (2019)

    Google Scholar 

  16. Ryo, T., et al.: Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun. Numer. Meth. Eng. 25, 565–580 (2009)

    Article  MathSciNet  Google Scholar 

  17. Einstein, D.R., Reinhall, P., Nicosia, M., Cochran, R.P., Kunzelman, K.: Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. Biomed. Eng. 6(1), 33–44 (2003)

    Article  Google Scholar 

  18. Ranga, A., Mongrain, R., Biadilah, Y., Cartier, R.: A compliant dynamic FEA model of the aortic valve. In: 12th IFToMM World Congress, Besançon, France, pp. 1–6 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ha, S.T., Nguyen, T.D., Vu, V.C., Nguyen, M.H., Nguyen, M.D. (2022). A Study of Fluid-Structure Interaction of Unsteady Flow in the Blood Vessel Using Finite Element Method. In: Tien Khiem, N., Van Lien, T., Xuan Hung, N. (eds) Modern Mechanics and Applications. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3239-6_85

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3239-6_85

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3238-9

  • Online ISBN: 978-981-16-3239-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics