
Chapter 8
Hydrologic Assessment
of the Uncertainty of Six Remote Sensing
Precipitation Estimates Driven
by a Distributed Hydrologic Model
in the Blue Nile Basin

Hadir Abdelmoneim, Mohamed R. Soliman,
and Hossam M. Moghazy

Abstract Because of the sparseness of the ground monitoring network, precipi-
tation estimations based on satellite products (PESPs) are currently requisite tools
for hydrological simulation research and applications. The evaluation of six global
high-resolution PESPs (TRMM 3B42V7, GPGP-1DD, TRMM 3B42RT,
CMORPH-V1.0, PERSIANN, and PERSIANN-CDR) is the ultimate purpose of
this research. Additionally, the distributed Hydrological River Basin Environmental
Assessment Model (Hydro-BEAM) is used to investigate their potential effects in
streamflow predictions over the Blue Nile basin (BNB) during the period 2001 to
2007. The correctness of the studied PESPs is assessed by applying categorical
criteria to appraise their performances in estimating and reproducing precipitation
amounts, while statistical indicators are utilized to determine their rain detection
capabilities. Our findings reveal that TRMM 3B42V7 outperforms the remaining
product in both the estimation of precipitation and the hydrological simulation, as
reflected in highest NSE and R2 values ranges from 0.85 to 0.94. Generally, the
TRMM 3B42V7 precipitation product exhibits tremendous potential as a substitute
for precipitation estimates in the BNB, which will provide powerful forcing input
data for distributed hydrological models. Overall, this study will hopefully provide
a better comprehension of the usefulness and uncertainties of various PESPs in
streamflow simulations, particularly in this region.
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8.1 Introduction

Precipitation inputs are a vital source for research and applications of hydrologic
simulations, specifically in data-scarce areas where the rareness of gauging net-
works curtails the accessibility of precise and credible rainfall data. However,
measured ground gauging data are either sparse in time and space in several areas,
or ungauged regions exist in several populous areas of the world, such as devel-
oping regions (Behrangi et al. 2011).

Many high-resolution precipitation estimations based on satellite products
(PESPs) have been operatively obtainable over a quasi-global scale in recent dec-
ades at high temporal (3 h) and spatial (almost 0.25°) resolutions. These products
are potential substitutes for rainfall datasets in global hydrometeorological studies
and applications. Commonly used satellite precipitation estimates include Tropical
Rainfall Measuring Mission (TRMM) data (Huffman et al. 2007), the National
Oceanic and Atmospheric Administration (NOAA)’s Climate Prediction Center
(CPC) MORPHing technique data (CMORPH) (Joyce et al. 2004), the Global
Satellite Mapping of Precipitation (GPM) data (Kubota et al. 2007) and the
Precipitation Estimation from Remotely Sensed Imagery using Artificial Neural
Networks (PERSIANN) data (Sorooshian et al. 2000). These PESPs are capable of
monitoring temporal precipitation variations and spatial patterns at diminutive
resolutions. Additionally, they provide useful tools to promote hydrological pur-
poses for fully distributed hydrological models, especially in data-sparse regions
and regions with nonexistent data (Sun et al. 2016).

Reviews of recent studies allow the studies to be classified into two categories: the
first focuses on evaluating and comparing PESPs against the estimates of local
gauging networks (Ali et al. 2017; Habib et al. 2012; Hirpa et al. 2010; Fenta et al.
2018; Gebere et al. 2015; Gebremicael et al. 2017; Jiang et al. 2018; Romilly and
Gebremichael 2011). Among these studies, Jiang et al. (2018) used continuous sta-
tistical indices (RMSE, CC, and RE) and categorical metrics (POD, FBI, FAR, and
ETS) to evaluate the accuracies of two high-resolution PESPs (TRMM 3B42V7 and
CMORPH) for the interval 2010 to 2011 in Shanghai. Additionally, Gebremicael
et al. (2017) evaluated eight PESPs against in situ rainfall data over the upper
Tekeze-Atbara basin, which characterizes by the composite topography of Ethiopia.

The second category involves the evaluation and investigation of the impacts of
PESPs through streamflow simulations driving hydrological models over various
regions (Alazzy et al. 2017; Bitew and Gebremichael 2011; Bitew et al. 2012; Jiang
et al. 2012; Lakew et al. 2017; Sun et al. 2016; Stisen and Sandholt 2010; Tong
et al. 2014; Xue et al. 2013; Wang et al. 2015). For instance, Sun et al. (2016)
statistically evaluated the four latest PESPs (CMORPH-CRT, CMORPH-CMA,
CMORPH-BLD, and TRMM 3B42V7) over the Huaihe River basin in eastern
China. Additionally, the authors employed the variable infiltration capacity
(VIC) distributed model to predict the river flow rate within the period 2003–2012.
The results revealed that CMORPH-CMA had a perfect capability for improving
the distribution of precipitation and hydrological applications. They also recom-
mend this CMORPH-CMA as an alternative rainfall input source for this region.
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Li et al. (2019) assessed three PESPs (TMPA 3B42V7, PERSIANN-CDR, and
GPM IMERG) at daily and monthly timesteps in the lower Mekong River basin,
which is located in Southeast Asia. They also investigated the potential of these
PESPs to predict streamflows driven by a distributed geomorphology-based
hydrological model (GBHM). Their findings revealed that the IMERG product can
be used to reproduce precipitation well and accurately, particularly in the detection
of heavy rainfall events. The hydrological simulations forced by the three datasets
revealed acceptable precisions at major stations. Moreover, simulated results forced
by IMERG outperformed the remaining products, as the smallest RRMSE values
and largest NSE values were calculated for the IMERG product.

The Blue Nile River is a vital tributary of the Nile River and provides the
greatest portion to the flow of the Nile River, approximately 60%. The area of the
Blue Nile River suffers from a sparse rain gauge network with an uneven distri-
bution. In addition, the region is characterized by complex topography, a variable
climate, and a large geographical area. Hence, the use of PESPs as driving forces
for hydrological models is necessary after the determination of the accurate product
for this basin. A few prior studies focused on the evaluation of PESPs over small
basins in the Ethiopian highland, such as the studies by Bitew and Gebremichael
(2011) and Bitew et al. (2012). Additionally, Gebremicael et al. (2017) explored the
relationships between PESPs and topography to understand the conceivable mis-
calculations generated by the rugged land in the area. To the best of our knowledge,
no study has evaluated PESPs and investigated their ability to predict streamflow
over the entire BNB. Therefore, the present research focuses on the comprehensive
hydrologic assessment of the uncertainty of six PESPs (TRMM 3B42V7, TRMM
3B42RT, PERSIANN, PERSIANN-CDR, CMORPH-V1.0, and GPGP-1DD) in the
Blue Nile Basin (BNB). This work aims to compare and evaluate the performance
of six high-resolution PESPs in capturing the magnitude of rainfall over the BNB
against data from land gauges within the period 2001 to 2007. Additionally, the
effects of the studied PESPs on hydrologic simulation procedures at the target basin
is investigated, driven by the distributed Hydrological River Basin Environmental
Assessment Model (Hydro-BEAM), which was established by Kojiri et al. (1998).
This attempt is valuable as it relates to the use of high-resolution PESPs for
monitoring and predicting streamflows in the BNB and in similar watersheds that
are characterized by common climate and topography.

8.2 Materials and Methods

8.2.1 Study Area

The Nile River is a transboundary river, and its tributaries travel through eleven
countries. The Nile River has two vital tributaries: the White Nile River and the
Blue Nile River. The Blue Nile River, chosen in this paper as the study area, is a
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crucial Nile River tributary originating from the Ethiopian Plateau, flowing into
Sudan, and meeting the White Nile River at Khartoum to form the main Nile River.
This river is considered the Nile River's critical tributary, as it provides a large
portion of the flow of the Nile River, approximately 60%. The BNB is located
between latitudes 16°2′N and 7°40′N and longitudes 32°30′E and 39°49′E in the
Ethiopian Highlands, as shown in Fig. 8.1. The river originates from the outlet of
Lake Tana, flowing south in the Ethiopian highlands and then northwest; its length
is approximately 900 km from Lake Tana to the Sudanese border, and the river
ends when it reaches the White Nile River in Khartoum, Sudan (Samy et al. 2015).
The drainage area of the BNB is estimated at approximately 325,000 km2 (Ragab
and Valeriano 2014). The catchment includes a range of topographic conditions,
sizes, climatic conditions, slopes, geological features, drainage patterns, vegetation
covers, soils, and anthropogenic activity.

The topography of the watershed is split into two distinct features: the first
comprises flat topography in the lowlands of Sudan, and the second includes
mountainous topography in the Ethiopian Plateau, where the regions containing
high, steep mountains, when combined, overlay approximately 65% of the drainage
area (Gebrehiwot et al. 2011). The Ethiopian Plateau is situated at altitudes of
2,000–3,000 m, with certain areas reaching heights up to or above 4,000 m, as

Fig. 8.1 a The BNB’s location in the Ethiopian Highlands and (right) a DEM map of the BNB;
b the average annual precipitation distribution over the BNB; c the average annual temperature
distribution over the BNB; d soil types in the BNB; and f the average annual evapotranspiration
distribution over the BNB (Abd-El Moneim et al. 2019)
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illustrated in Fig. 8.1a (Ragab and Valeriano 2014). Precipitation over the BNB
varies remarkedly with altitude from nearly below 200 mm/yr in the northeastern
part of the basin to 2,000 mm/yr in Ethiopia’s highlands, as displayed in Fig. 8.1b
(Awulachew et al. 2008). In the northeastern clay plains of Sudan, the greatest
mean annual temperatures occur. In Sudan, 24 and 44 °C are the daily minimum
and maximum temperatures in May, and 14 and 33 °C are the daily minimum and
maximum temperatures in January, respectively. The Ethiopian Plateau region is
characterized by lower monthly mean minimum temperatures, ranging from 3 to
21 °C, between December and February, as shown in Fig. 8.1c (Awulachew et al.
2008). The spatial distribution of evapotranspiration in the region is similar to those
of rainfall and temperature, with considerable variations across the basin and a
notable correlation with altitude, as illustrated in Fig. 8.1f (Awulachew et al. 2008).

8.2.2 In Situ Precipitation and Discharge Datasets

Measured datasets play pivotal roles in the quantitative evaluation of PESPs. Due to
the scarcity of data in developing regions, rainfall and Blue Nile flow rate data are
collected through a process that requires the study time interval to be set from 2001
to 2007, according to the availability of measured datasets. Additionally, these data
were collected on a monthly timestep from published reports by the Ministry of
Water Resources and Irrigation (MWRI) in Egypt (MWRI 1998a; b). Monthly
rainfall data from 15 ground rain gauges and the monthly discharge data from the
Khartoum station are used in the current study, as shown in Fig. 8.1a. Incorrect
values, such as negative and missed values, were rejected, which may make the
comparison unreliable.

8.2.3 Remote Sensing Precipitation Estimation Products

8.2.3.1 TRMM Products

The National Space Development Agency (NSDA) and the National Aeronautics
and Space Administration (NASA) jointly established the TRMM on 27 November
1997. This satellite is primarily intended for weather and climate science moni-
toring and for observations of tropical precipitation. The main pieces of rainfall
equipment on this satellite are the Visible and Infrared Radiometer Network
(VIRS), the TRMM Microwave Imager (TMI), and the Precipitation Radar
(PR) (Kummerow et al. 1998). The TRMM Multisatellite Precipitation Analysis
(TMPA) rainfall products were blended with other high-quality rainfall estimate
algorithms, such as infrared-based (IR) and merged active/passive microwave
(PMW) rainfall estimations, and these merged data were added to other numerous
source dataset rainfall product blends, according to Huffman et al. (2007). The three
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following steps are carried out for this product: first, the PMW rainfall estimates are
calibrated and combined to produce the utmost reliable PMW estimates; next, the
calibrated PMW estimates are utilized to produce IR rainfall estimations; and
finally, the PMW and IR rainfall estimations are combined to provide the best
TMPA rain estimations (Alazzy et al. 2017). Two versions of TMPA products are
accessible with coverage between the longitudinal range 180°W–180°E and the
latitudinal range 50°S–50°N as well as a fine spatial resolution (0.25° � 0.25°) and
a high temporal resolution (3 h): a post-real-time research version (3B42) and a
real-time version (3B42RT). The TRMM 3B42V7 product was adjusted via the
monthly deviation of the precipitation dataset from the Global Precipitation Climate
Center (GPCC) calibration meteorological stations compared to the TRMM
3B42RT product. Furthermore, this product has many computational enhancements
and good data precision (Huang et al. 2014). The principal distinction between the
two versions is that the post-real-time research product uses monthly ground rainfall
data for bias correction. In this study, the TRMM 3B42V7 and 3B42RT datasets
used were obtained from https://giovanni.sci.gsfc.nasa.gov/giovanni/.

8.2.3.2 CMORPH Product

The CMORPH tool of NOAA is a process of rainfall estimation based primarily on
passive microwave (PWM) satellite measurements collected from low Earth
orbiting (LEO) satellite radiometers; it incorporates a tracking technique using data
from infrared (IR) measurements solely to derive a field of cloud motion that is
thereafter used to propagate pixels of rainfall (Joyce et al. 2004). The latest satellite
rainfall datasets, named the CMORPH-Version 1.0 products, have recently been
developed by NOAA-CPC in three product forms: a pure satellite rainfall product
(CMORPH-RAW), a gauge-satellite blended product (CMORPH-BLD) and a
bias-corrected product (CMORPH-CRT). The CMORPH-RAW is an outcome of
satellite-only rainfall estimates created by merging passive microwave-based rain-
fall estimates the infrared data of various geostationary satellites as well as
numerous low orbit satellites. The following can be summarized as the key dis-
crepancies between the ancient version, 0.x, and the new version, 1.0: fixed ver-
sions of satellite rainfall datasets and a fixed algorithm were used during the whole
TRMM/GPM period (1998–present) in the latest version, 1.0, particularly to ensure
the best possible homogeneity, whereas the ancient version, 0.x, has been devel-
oped since 2002 using various enhanced algorithms and developing satellite-based
inputs of rainfall product versions (Joyce et al. 2010). In this work, the
CMORPH-V1.0 RAW datasets were used; these datasets are freely available at
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPHV1.0/.
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8.2.3.3 PERSIANN Products

The PERSIANN product (Hsu et al. 1997) is one of the accepted estimates of global
precipitation used to estimate historical precipitation from March 2000 until now.
For its global precipitation estimations, the product uses the neural network method
to derive relationships between IR and PMW estimates from Geostationary Earth
Orbiting (GEO) and LEO satellite imagery, respectively (Sorooshian et al. 2000).
First, the Grid Satellite (GridSat-B1) IR record archive (Knapp 2008) was used in
the latest version of the PERSIANN-Climate Data Record (PERSIANN-CDR)
product as an input to the eligible PERSIANN model; then, the Global Precipitation
Climatology Project (GPCP) version 2.2 updated the biases in the predicted
PERSIANN precipitation values on a monthly time scale (Ashouri et al. 2015). The
parameters of the PERSIANN model were pretrained using stage-IV hourly pre-
cipitation data from the National Centers for Environmental Prediction (NCEP);
later, the model was run using the full GridSat-B1 IR historical record with fixed
model parameters as indicated in the calibration scheme by Ashouri et al. (2015).
This product is available with a daily temporal resolution and a fine spatial reso-
lution (0.25° � 0.25°). Precipitation datasets are available from 1 January 1983 to
the present. In the current research, the two PERSIANN product (PERSIANN and
PERSIANN-CDR) datasets that were used were freely obtained from http://
chrsdata.eng.uci.edu/.

8.2.3.4 GPCP-1DD Product

The Global Precipitation Climatology Project One Degree Daily (GPCP-1DD)
product incorporates IR and PMW precipitation estimates with the GPCC gauging
dataset (Huffman et al. 1997). In the GPCP-1DD product, the PMW precipitation
estimates depend on the Special Sensor Microwave/Imager (SSM/I) data from the
Defense Meteorological Satellite Program (DMSP, US), while the IR data are
principally obtained from the precipitation index (PI) data of the Geostationary
Operational Satellite (GOES) (Xie and Arkin 1995). This product has the advantage
of integrating precipitation estimate information by incorporating the strengths of
different data types from multiple data sources. The GPCP-1DD product provides
daily data on global precipitation grid with a resolution of 1° � 1°. The
GPCP-1DD datasets are available to download from https://ftp://ftp.cgd.ucar.edu/
archive/PRECIP/.

Overall, Table 8.1 presents the six PESPs (TRMM 3B42V7, GPGP-1DD,
TRMM 3B42RT, CMORPH-V1.0, PERSIANN, and PERSIANN-CDR) used in
this work.
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8.2.4 Hydro-BEAM Model

Hydro-BEAM is a physically based distributed hydrological model established by
Kojiri et al. (1998). The model was confined to environments characterized by
moist circumstances until the model was adjusted for simulations of flash flood
events in arid wadis (Abdel-Fattah et al. 2015; Saber et al. 2013) and semiarid
basins (Abdel-Fattah 2017; Saber and Yilmaz 2016). The model has also been
successfully used in numerous hydrological studies under different climatic con-
ditions (e.g., Abd-El Moneim et al. 2017; Saber and Yilmaz 2018; Abdelmoneim
et al. 2020). In this study, Hydro-BEAM is used to evaluate the simulated
streamflow rates over the BNB based on six PESPs.

The ultimate benefit of the Hydro-BEAM model is the reflection of the spatial
variability in catchment features and hydrological processes, where it can reflect
hydrological surface and subsurface procedures, such as surface runoff, evapo-
transpiration, channel flow routing, groundwater flow, and the intake/release of
water on spatially distributed meshed cells. To understand differences in infiltration
due to changes in land cover, the model identifies three types of land cover (Sapkta
et al. 2010). The model consists of four layers, from A to D, which represent the
upper layer for the surface and the remaining layers for the subsurface, as shown in
Fig. 8.2a.

(a)

(b)

(c)

(d)

Fig. 8.2 Conceptual representation of Hydro-BEAM: a the basic structure of Hydro-BEAM; b the
kinematic wave model of the surface layer; c the subsurface storage tank layer representation; and
d the reservoir modeling approach (Kojiri et al. 1998; Abdelmoneim et al. 2020)
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Each mesh cell includes details such as surface runoff, land use, slope direction,
and a channel's absence/presence (Saber 2010). Layer A represents the surface
layer, while layers B to D represent the subsurface layers, as denoted in Fig. 8.2b.
In this study, Layer D is neglected as it contains deep groundwater, which has a
minor effect on the BNB flow rate. The subsurface layer structures (layers B and C)
are based on the linear storage model (see Fig. 8.2c). When the water content
storage in these layers reaches a saturated state, the water is discharged into the
river combined by layer A. The suggested method can be outlined by the following
key processes: (1) watershed modeling is carried out using the methodology of the
geographical information system (GIS), (2) the kinematic wave approach is used to
calculate the stream routing and surface runoff modeling, (3) transmission loss
modeling is calculated using the Walter equation (Walters 1990), and (4) canopy
interception losses and (5) the linear storage model are applied for the modeling of
groundwater. The spatial resolution implemented in the current research for the
BNB is 5 km (*0.05°), as indicated in (Abd-El Moneim et al. 2017).

The Blaney-Criddle method was used to determine potential evapotranspiration
(ET0) in the model as follows (Karamouz et al. 2013):

ET0 ¼ p 0:46T mean þ 8:13ð Þ ð8:1Þ

where ET0 is the potential evapotranspiration (mm/d), Tmean is the average tem-
perature (°C), and p is the daily average proportion of daytime hours per year. We
can determine the value of p depending on the estimated latitude of the study area
(the number of degrees north or south of the equator) (Karamouz et al. 2013). In
this study, daily temperature and daily radiation datasets were retrieved from the
Climate Forecast System Reanalysis (CFSR). The datasets are available to down-
load from https://globalweather.tamu.edu/#pubs.

Stream routing and surface runoff were calculated using integrated kinematic
wave runoff approximations assuming a triangular river cross-section, as shown in
Eqs. (8.2, 8.3, 8.4, 8.5):

@h
@t

þ @q
@x

¼ fr ð8:2Þ

q ¼ a h� dð Þ5=3 þ ah h[ dð Þ ð8:3Þ

q ¼ ah ð8:4Þ

When
h� d
h� d

� �
; d ¼ kD

a ¼
ffiffiffiffiffiffiffiffiffi
sin h

p

n
; a ¼ Ks

sin h
c

ð8:5Þ
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where q is the unit discharge (m3/s/m), h is the depth of the water (m), r is the
effective precipitation intensity input (m/s) corresponding to the total rainfall
infiltration into the soil after evapotranspiration losses are extracted, f is the ratio of
direct runoff, which is equal to the upper soil saturation ratio, layer A (0–1), k is the
porosity, a and m are friction constants, x is the gap to the edge upstream, d is the
saturation pondage (m), and D is the thickness of the layer (m).

A multilayer linear storage feature model is implemented on the Hydro-BEAM
layers B and C to realistically calculate the base flow procedure. The linear storage
function model's continuity equation and its dynamic equation are as follows:

dS
dt

¼ I � O ð8:6Þ

O ¼ kS ð8:7Þ

where I is the inflow (m/s), S is the storage of water (m), k is the coefficient of runoff
(l/s), and O is the outflow (m/s).

8.2.4.1 Parameters and Calibration

It is noteworthy that the calibration of the model consists of a method that adjusts
the parameters to achieve the optimum possible simulation of the realistic runoff
measured for some forced data (Jiang et al. 2012). The parameters of the model may
display several variations when utilized to simulate the flow rates (Stisen and
Sandholt 2010). In the current analysis, the model with individual PESPs as inputs
was calibrated with the observed streamflow data in the BNB.

The distributed hydrological model for the BNB was calibrated and validated
against the available measured streamflow data from 2001 to 2007. The entire study
period was classified into two periods: the calibration period, from 2001 to 2003,
and the validation period, from 2004 to 2007. Table 8.2 illustrates the respective
ranges of the model parameters used, which are dependent on variables such as land
use and soil. The calibration regime returns the best parameter values that maximize
the Nash–Sutcliffe efficiency (NSE) between the observed and simulated monthly
flow rates (Bitew et al. 2012). Such parameters authorize us to parse the influence of
the precipitation data source on the model calibration and validation.

8.2.5 Statistical Metrics for the Performance Evaluation

Several commonly utilized statistical indicators were employed to qualitatively
analyze the overall performance of the six studied PESPs versus the gauge-based
precipitation measurements. In the current analysis, three different statistical criteria
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were implemented to determine the correctness of the six PESPs, as explained in
detail below.

8.2.5.1 Continuous Statistical Metrics

Continuous verification metrics were used, including the Pearson correlation
coefficient (CC), relative error (RE), and root-mean-square error (RMSE). The CC
refers to the rainfall variation synchronicity between the in situ rainfall data and
PESPs, the RE describes the extent of the simulated error compared with that in the
rain gauges, and the RMSE was employed to assess the averaged error magnitude.
These metrics are calculated as follows:

CC ¼
Pn

i¼1 Gi � G
0
i

� �
Pi � P

0
i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Gi � G0
ið Þ2Pn

i¼1 Pi � P0
ið Þ2

q ð8:8Þ

RE ¼
Pn

i¼1 Pi � Gið ÞPn
i¼1 Gi

� 100% ð8:9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Pi � Gið Þ2
n

s
ð8:10Þ

where Pi and Gi are the ith pair of PESPs and the gauge-based rainfall data,
n reflects the cumulative number of timescales, and P

0
i and G

0
i are the corresponding

Table 8.2 Calibration parameters of the hydrological model for various PESPs

Parameters Symbol Value
range

Units

Horizontal coefficient of
permeability

B-layer
C-layer

0.2
0.025

Vertical coefficient of permeability B-layer 0.4

Layer thickness A-layer 0.4 m

Equivalent roughness coefficient Grass
Forest
Urban

0.3
0.7
0.03

m−1/

3 s

Direct runoff constant Grass
Forest
Urban

0.5–0.75
0.3–0.5
0.9

Porosity B-layer
C-layer

15.0
15.0

%

Finite difference interval Spatial finite difference
interval

2,500 m
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average values of the PESP data and the gauge-based data, respectively. The locally
measured data and PESP data are considered compatible, without PESP-associated
uncertainty, if the RMSE value and RE value are equal to zero and the CC value is
equal to 1; this corresponds to higher CCs and lower RMSEs representing higher
accuracy of PESP data.

8.2.5.2 Categorical Statistical Metrics

To test the detection capability analysis of PESPs against locally measured data at
various precipitation thresholds, four categorical statistics were utilized based on
the 2 � 2 contingency table. The following indices were used: the detection
probability (POD), the frequency bias index (FBI), the false alarm rate (FAR), and
the equitable threat score (ETS) POD, also called the hit rate. These indices were
used to calculate the occurrences of rainfall by satellites and determine whether
rainfall occurrences were detected correctly. FAR denotes that occurrences of
rainfall were detected incorrectly. Furthermore, ETS indicates how well PESPs
conformed to the measurements of the rain gauges. These indices were calculated as
follows:

POD ¼ H
HþM

ð8:11Þ

FAR ¼ F
HþF

ð8:12Þ

ETS ¼ H � hits
HþMþF � hits

ð8:13Þ

hits ¼ HþMð Þ HþFð Þ
HþMþFþ Z

FBI ¼ HþF
HþM

ð8:14Þ

where H is the correct detection of the measured precipitation number (hits), F is
the precipitation number detected but not measured, and M is the precipitation
number measured but not detected (misses). The ideal POD, FBI, FAR, and ETS
values are 1, 1, 0, and 1, respectively. More information and explanations are
described in Schaefer (1990), Wilks (2006) and Sun et al. (2016).

8.2.5.3 Statistical Evaluation of the Hydrological Model

In both the observed streamflows and the resultant streamflow simulations, statis-
tical evaluation indices were applied to assess the uncertainty and the performance
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of six PESPs. The criteria for model performance were tested using three widely
utilized statistical indicators for simulations of hydrological models. First, NSE was
used to match simulated flows with their statistical goodness values. NSE varies
from −1 to 1, with greater values signifying stronger correspondences (Legates
and McCabe 1999). If NSE � 0, then the model lacks skill concerning the
observed mean as a predictor (Lakew et al. 2017). Additionally, the percent bias
(Bias) and the determination coefficient (R2) were utilized to assess the agreement
between the simulated and measured discharges. These statistical indices were
calculated using Eqs. (8.15), (8.16), and (8.17), respectively, as follows:

NSE ¼ 1�
Pn

i¼1 Qobs � Qsimð Þ2Pn
i¼1 Qobs � Q0

obs

� �2 ð8:15Þ

R2 ¼
Pn

i¼1 Qobs � Q
0
obs

� �
Qsim � Q

0
sim

� �2
Pn

i¼1 Qobs � Q0
obs

� �2 Pn
i¼1 Qsim � Q0

sim

� �2 ð8:16Þ

Bias ¼
Pn

i¼1 Qsim � Qobsð ÞPn
i¼1 Qobs

� 100% ð8:17Þ

where Qsim and Q
0
sim are the simulated streamflow and the average simulated

streamflow, respectively, and Qobs and Q
0
obs are the measured streamflow and the

average measured streamflow, respectively. When the values of NSE = 1, R2 = 1,
and Bias = 0%, the optimum result occurs.

8.3 Results and Discussions

8.3.1 Comparison and Assessment of PESPs

The PESP precision against the in situ rain data was first tested over the BNB to
understand the adverse effects of these products on hydrologic models and their
correlated uncertainties. The comparative analysis was carried out using statistical
approaches to explore and distinguish precipitation patterns and quantify errors over
the BNB for six PESPs. The BNB climate is typified by a dry winter season, little
spring rain, and a wet summer season (Awulachew et al. 2008). In the summer
months between June and September, approximately 70% of the annual precipi-
tation falls (Awulachew et al. 2008). In this study, one year is split into three
periods: the dry season (known in Ethiopia as the Bega) (October–February), the
period of little rainfall (known in Ethiopia as the Belg) (March–May), and the wet
season (known in Ethiopia as the Kremt). Figure 8.3 displays the spatial distribu-
tion maps of the annual average rainfall (column (a)), the dry season (column (b)),
the season of little rain (column (c)), and the wet season (column (d)) obtained from
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Fig. 8.3 Distribution maps of annual average (column (a)), dry season (column (b)), small rainy
season (column (c)) and rainy season (column (d)) rainfall amounts obtained from PESPs over the
BNB during 2001–2007 (mm/month)
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PESPs over the BNB during the period from 2001–2007. Most PESPs (except
PERSIANN) typically displayed harmonious patterns of precipitation, with pre-
cipitation events decreasing from south to north. However, high precipitation
quantities are concentrated in the southern BNB zone in the elevated mountainous
areas, and precipitation obviously depends on the basin’s elevation. The precipi-
tation distribution maps also show increases in precipitation in summer (the wet
season), especially in August, but precipitation is seen to decrease in winter (the dry
season). In both the seasonal and annual spatial patterns, TRMM 3B42V7 repro-
duced the spatial distributions well against the gauge-based observations.
Conversely, the annual and seasonal precipitation patterns obtained with
PERSIANN were very distinct with different precipitation intensity distributions.

Figure 8.4 shows the relative volume contributions and the frequency distribu-
tions of monthly rainfall at point-based gauge locations in various rainfall event
ranges. The monthly precipitation was classified into four groups: 0, 0–100, 100–
200, and >200 mm/month. All six PESPs underestimated no rainfall events at the
occurrence frequency, while they overestimated small, heavy, and torrential pre-
cipitation occurrences (0–100 and >200 mm/month). In terms of moderate rainfall
events, all PESPs overestimated their frequencies. The TRMM 3B42V7 estimations
were close to the rainfall gauge data for the volume contribution distribution;
however, there were some differences compared with the observed gauge-based
data. The different performances of volume contributions among PESPs signifi-
cantly influenced the following hydrological simulations, as most hydrological
processes in distributed hydrological models are sensitive to the total precipitation
amount and to the distribution of rainfall intensity (Sun et al. 2016). Overall,
TRMM 3B42V7 had a greater agreement than the other products when comparing
both occurrence frequency and relative volume contribution rate data for moderate

Fig. 8.4 The occurrence frequencies (bars) of each monthly PESP estimate and their relative
volume contributions (lines) to the total rainfall for the 2001–2007 period

240 H. Abdelmoneim et al.



and extreme rainfall events with rain gauge-based data. TRMM 3B42RT, however,
had better agreement with the gauge-based data for no rainfall events and small
rainfall events.

Figure 8.5 shows the average monthly precipitation scatterplots of six PESPs
against in situ rainfall observations and provides further insight into the charac-
teristics of the variations between the six studied PESPs (TRMM 3B42V7, TRMM
3B42RT, GPCP-1DD, CMORPH-V1.0, PERSIANN, and PERSIANN-CDR) and
the in situ rainfall observations during the period from 2001 to 2007 over the BNB.
In addition, the statistical indicators of the monthly scale estimations of six PESPs
are briefly described in Table 8.3. Good agreement can be observed for all PESPs
compared with the gauging measurements except PERSIANN. Among these
PESPs, TRMM 3B42V7 exhibited the best correspondence against the rain gauge
observation data, which is reflected in its CC value of 0.97, the highest among all
products, and its RMSE of 14.25 mm/month and RE of 10.14%, the smallest
among all products (Fig. 8.5a). Additionally, TRMM 3B42RT and GPCP-1DD
showed good performance against the rain gauge observations, with CC values of
0.96 and 0.93 and RMSE values of 28.98 mm/month and 28.46 mm/month,
respectively (Fig. 8.5b, e). In contrast, PERSIANN missed the monthly variance for
the target basin and presented the poorest values: an RMSE of 82.17 mm/month
and an RE of 124.13% (Fig. 8.5c).

TRMM3B42V7 vs. Gauge

Fig. 8.5 Scatterplots showing monthly precipitation between in situ rainfall observations and
PESPs in the BNB during 2001–2007

Table 8.3 Statistics of in situ rainfall measurements and PESPs at the monthly timestep

TRMM
3B42V7

TRMM
3B42RT

CMORPH-
V1.0

GPCP-1DD PERSIANN PERSIANN-CDR

CC 0.97 0.96 0.94 0.93 0.95 0.69

RMSE 14.25 28.98 41.49 28.46 82.17 80.95

RE
(%)

10.14 32.26 63.70 34.21 124.13 18.93
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For the categorical statistics, the overall accuracy of the precipitation products
(based on POD, FBI, FAR, and ETS) decreased as the rainfall threshold rose,
indicating that the studied PESPs are less skilled at estimating the exact magnitudes
of intense precipitation events. Figure 8.6 illustrates the precipitation detection
analysis events over the BNB at several precipitation thresholds, 30 mm/month,
60 mm/month, 90 mm/month, 120 mm/month, and 150 mm/month, using cate-
gorical statistics (POD, FBI, FAR, and ETS). All PESPs showed POD scores
greater than 0.9 (except GPCP-1DD) (Fig. 8.6a). However, for FAR, TRMM
3B42V7 showed the lowest value across all precipitation ranges; meanwhile, the
best score was observed for TRMM 3B42RT for the threshold of 90 mm/month
(Fig. 8.6b). In general, TRMM 3B42V7 had the best FAR, ETS and FBI values,
indicating that it exhibited the best performance across all precipitation ranges. At
the same time, PERSIANN demonstrated the weakest performance for the cate-
gorical statistics.

Fig. 8.6 a POD, b FAR, c FBI, and d ETS values of the six monthly PESPs against rain gauge
observations at 30 mm/month, 60 mm/month, 90 mm/month, 120 mm/month and 150 mm/month
threshold values over the BNB during 2001–2007
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8.3.2 Comparison and Hydrologic Evaluations
of Streamflow

According to Bitew and Gebremichael (2011), there are two advantages to evalu-
ating PESPs based on their predictive flow rate performances in a hydrologic
modeling framework. One of them is that PESPs are evaluated as a driving input
variable in a hydrological model concerning a specific application. In the prior
section, all PESPs were compared against the gauge-based observations; the sub-
sequent phase was designed to evaluate how these PESPs influenced streamflow
simulations by driving the Hydro-BEAM model over the BNB. The streamflow
simulation using the Hydro-BEAM Model was calibrated by comparing the mea-
sured discharge to examine the efficacy of the six studied PESPs over BNB during
the calibration period. The Hydro-BEAM model was then forced by
CMORPH-V1.0-RAW, TRMM 3B42V7, TRMM 3B42RT, PERSIANN,
PERSIANN-CDR, and GPCP-1DD as inputs for seven years (2001–2007) by
maximizing the NSE value and the previous model parameter values. Figure 8.7
shows the monthly measured discharge hydrograph compared with the simulated
hydrographs in the calibration (from 2001 to 2003) and validation (2004–2007)
periods at Khartoum Station. Overall, the simulated hydrographs are noted to be in
good agreement with the observed hydrograph, but in some cases, the simulated
flows are either underestimated or overestimated compared to the high peaks
observed. However, the simulated streamflows presented the relatively low per-
formances of some PESPs in the validation period.

The exceedance probability between the monthly measured and simulated dis-
charges is dependent on the rain gauge observations, and the six studied PESPs,
used as rainfall drivers in the BNB for the interval 2001–2007, are shown in
Fig. 8.8. In the calibration period, the exceedance probability plots indicated
underestimations of high streamflows for all PESPs and overestimations of low
streamflows for all PESPs (Fig. 8.8a). On the other hand, in the validation period,
all PESPs showed underestimations of high streamflows and overestimations of low
streamflows (except PERSIANN and CMORPH-V1.0) (Fig. 8.8b). As the statisti-
cal measures briefly described in Table 8.4, the three statistical indices used to
measure the efficiency of the model showed perfect agreement between the
observed and simulated hydrographs during the calibration period and reasonable
simulations conducted during the validation period. According to the statistical
metrics that reflect the model performances, the Hydro-BEAM model can capture
the timing, occurrence, and magnitude of the rainfall events shown in the monthly
observed hydrograph quite well. Although these metric indices were reasonable for
the validation period, they were not as good as those obtained during the calibration
period, which indicates better agreement during this period.

The simulation forced by the TRMM 3B42V7 product had the best NSE (0.88
and 0.85), Bias (10.35% and − 2.87%), and R2 (0.94 and 0.92) values during the
calibration and validation periods, respectively. The predicted streamflow results
were in good correspondence with the observed streamflow data (see Fig. 8.7a,
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Table 8.4). The GPCP-1DD- and TRMM 3B42RT-forced simulations also showed
good agreements with the observed streamflow throughout the calibration period,
with NSE values of 0.87 and 0.87, Bias values of 12.23 and 17.31%, and R2 values
of 0.94 and 0.95, respectively. These products exhibit slightly less performances in
the validation period, with NSE values of 0.85 and 0.84, R2 values of 0.92 and 0.92,
and Bias values of 1.15% and 2.95%, respectively (Fig. 8.7b, c; Table 8.4).
Conversely, the PERSIANN and CMORPH-V1.0 simulations showed fair perfor-
mances, with NSE values of 0.59 and 0.42, Bias values of −38.01% and −31.86%,

Calibra on Valida on Calibra on Valida on

Fig. 8.7 Hydrographs of Hydro-BEAM-simulated and measured monthly discharges for the
calibration (2001–2003) and validation (2004–2007) periods (separated by the vertical line)

Calibration Validation

Fig. 8.8 Exceedance probabilities of monthly discharge in the a calibration period and
b validation period
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and R2 values of 0.84 and 0.68 in the validation period, respectively (Fig. 8.7e, f;
Table 8.4). Generally, the TRMM 3B42V7 simulations gave the best performance
with the Hydro-BEAM model among all PESPs over the BNB during the simu-
lation period (2001–2007). The PERSIANN and CMORPH-V1.0 are not recom-
mended for direct use, as they showed lower abilities to simulate streamflow over
the target basin. Therefore, bias removal in PESPs is key to enhancing the truth-
fulness of hydrologic simulations (Bitew and Gebremichael 2011).

8.4 Conclusions

PESPs are recognized as viable sources of precipitation data for use in various
hydrologic models for water resource management worldwide and for regional and
global hydrologic applications, particularly in data-sparse regions with poor or
nonexistent rain gauge measurements. In the current study, a comprehensive
analysis was performed to better understand the reliability, precision, and appli-
cability of six PESPs (TRMM 3B42V7, TRMM 3B42RT, PERSIANN,
PERSIANN-CDR, CMORPH-V1.0, and GPGP-1DD) against rain gauge mea-
surements over the BNB during 2001–2007. Precipitation distribution maps over
the BNB were presented based on the six PESPs, which are obviously dependent on
the basin’s elevation. It can also be noticed that the precipitation variation increased
in summer (the wet season), especially in August, but decreased in winter (the dry
season). Statistical analysis indicated that most PESPs could capture the occurrence,
timing, and magnitude of precipitation events. In particular, TRMM 3B42V7
typically presented a stronger ability to detect precipitation events than did the other
products and correlated well with rain gauge measurements. Moreover, the best
FAR, ETS, and FBI were obtained for TRMM 3B42V7 across all precipitation
thresholds. Conversely, PERSIANN mostly displayed the lowest estimations of the
entire precipitation (Bias), with a high RMSE. Additionally, PERSIANN showed
the worst results for the categorical statistics, although it had a better POD score
than did the other products.

Table 8.4 Statistical monthly summary measures of PESP inputs and corresponding streamflows
during the calibration and validation periods

Datasets Calibration Validation

NSE R2 Bias (%) NSE R2 Bias (%)

TRMM 3B42V7 0.88 0.94 10.35 0.85 0.92 − 2.87

GPCP-1DD 0.87 0.94 12.23 0.85 0.92 1.15

TRMM 3B42RT 0.87 0.95 17.31 0.84 0.92 2.95

PERSIANN-CDR 0.86 0.94 11.30 0.83 0.93 − 17.28

PERSIANN 0.79 0.94 25.79 0.59 0.84 − 38.01

CMORPH-V1.0 0.78 0.94 27.67 0.42 0.68 − 31.86
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For streamflow modeling, the predictive capacity of each PESP was examined
using the Hydro-BEAM model after a calibration with the observed measurements
was conducted. In general, all products achieved reasonable NSE and R2 values for
their estimations of streamflow series at the monthly timestep during the calibration
and validation periods (except CMORPH-V1.0 in the validation period). The
streamflow simulation results based on TRMM 3B42V7 provided the best corre-
spondence with the measured discharge series compared with the other PESPs.
Moreover, the results revealed that TRMM 3B42V7 may be another potential
source of data for the area characterized by sparse rainfall gauges in the BNB. In
contrast, the PERSIANN and CMORPH-V1.0 products demonstrated lower
potentials for utility in hydrologic applications over the BNB.

In summary, the six studied PESPs showed considerable potential for hydro-
logical applications and research. Among the six PESPs, TRMM 3B42V7 exhibited
the best performance when compared with observed, gauge-based data in terms of
all analyzed criteria over the BNB region, followed by GPCP-1DD and TRMM
3B42RT. By contrast, CMORPH-V1.0 showed fair agreement compared to the
other products. The evaluation of the six PESP-based simulations performed for the
BNB may not be valid for other areas characterized by different hydroclimatic
regimes. In general, this research hopefully offers a good understanding of the
utility and uncertainties of various PESPs in streamflow simulations and forecasts
and water resource planning and management with satellite-based rainfall data,
particularly in data-scarce catchments. Future studies are required to disclose PESP
applications under the conditions of climate change, different initial conditions, and
among various basins, especially those in data-sparse and ungauged regions.
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