Skip to main content

Design of a Nanocavity Photonic Crystal Structure for Biosensing Application

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 771))

Abstract

Optical biosensor is the most promising device with high sensitivity for the detection and analysis of biochemical composition. Due to the compact size, these designs have a vast application in biomedical and healthcare. In this paper, a nanocavity based 2-D photonic crystal sensor for sensing of several biochemical are proposed. In these structures, nanocavity is explored in the waveguide as a sensing node. This explored sensing node can detect the change in refractive index. The proposed nanocavity structure is designed for analyst refractive index in an optical wavelength of 1.43–1.65μm. For detecting the different analysts, the sensing node refractive index is changed. Simulation has been done for biotin-streptavidin, ethanol, hemoglobin, and water. For the different refractive index analysts, it has been observed that change in refractive index has shifted the resonating wavelength to higher wavelength. All the simulation has been done using Finite Difference Time Domain (FDTD) Method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherer A, Painter O, Vuckovic J et al (2002) Photonic crystals for confining, guiding, and emitting light. IEEE Trans Nanotechnol 1(1):4–11

    Article  Google Scholar 

  2. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  Google Scholar 

  3. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  Google Scholar 

  4. Arjmand M, Talebzadeh R (2015) Optical filter based on photonic crystal resonant cavity. Optoelectron Adv Mater Rapid Commun 9(1–2):32–35

    Google Scholar 

  5. Ge X, Shi Y, He S (2014) Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunnelling effect. Opt Lett 39(24):6973–6976

    Article  Google Scholar 

  6. Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149

    Article  Google Scholar 

  7. Joannopoulos JD, Johnson SG, Winn JN et al (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton

    Google Scholar 

  8. Brosi JM, Koos C, Andreani LC et al (2008) High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express 16(6):4177–4191

    Article  Google Scholar 

  9. Gao Y, Shiue RJ, Gan X et al (2015) High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett 15(3):2001–2005

    Article  Google Scholar 

  10. Lai WC, Chakravarty S, Wang X et al (2011) On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt Lett 36(6):984–986

    Article  Google Scholar 

  11. Zhang Y, Zhao Y, Wang Q (2013) Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sens Actuat B Chem 184:179–188

    Article  Google Scholar 

  12. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angewandte Chemie-Int Ed 53(13):3318–3335

    Article  Google Scholar 

  13. Zheng S, Zhu Y, Krishnaswamy S (2012) Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity. In: Conference on smart sensor phenomena, technology, networks, and systems integration, 12 Mar 2012–14 Mar 2012, SPIE, San Diego, CA, 8346: 83460D

    Google Scholar 

  14. Nair RV, Vijaya R (2010) Photonic crystal sensors: an overview. Prog Quantum Electron 34(3):89–134

    Article  Google Scholar 

  15. Chang Y, Jhu Y, Wu C (2012) Temperature dependence of defect mode in a defective photonic crystal. Optics Commun 285(6):1501–1504

    Article  Google Scholar 

  16. Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CS, Finegold DN (2003) Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J Am Chem Soc 125(11):3322–3329

    Article  Google Scholar 

  17. Muscatello MM , Asher SA (2008) Poly(vinyl alcohol) rehydratable photonic crystal sensor materials. Adv Funct Mater 18(8):1186–1193

    Google Scholar 

  18. Dell ’Olio F, Passaro VM (2007) Optical sensing by optimized silicon slot waveguides Opt. Exp. 15:4977–1493

    Google Scholar 

  19. Skivesen N, Têtu A, Kristensen M, Kjems J, Frandsen LH, Borel PI (2007) Photonic-crystal waveguide biosensor. Opt. Exp 15:3169–76

    Google Scholar 

  20. Divya J et al (2018) Laser Phys 28:066206

    Google Scholar 

  21. Grepstad JO, Kaspar P, Solgaard O, Johansen I, Sudbo AS (2012) Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application . Opt Exp 20(7):7954–7965

    Article  Google Scholar 

  22. Dahdah J, Courjal N, Baida FI (2010) B Analysis of a photonic crystal cavity based on absorbent layer for sensing applications. J Opt Soc Amer B 27(2):305–310

    Article  Google Scholar 

  23. Troia B, Paolicelli A, Leonardis FD, Passaro VMN (2013) Photonic crystals for optical sensing: a review. In: Advances in photonic crystals, ed. 2013. In-Tech Publication, pp 241–295

    Google Scholar 

  24. Dorfner DF, Hürlimann T, Zabel T et al (2008) Silicon photonic crystal nanostructures for refractive index sensing. Appl Phys Lett 93(18):181103(1–3)

    Google Scholar 

  25. Shiramin LA, Kheradmand R, Abbasi A (2013) High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal. IEEE Sens J 13(5):1483–1486

    Article  Google Scholar 

  26. Wang X, Xu Z, Lu N et al (2008) Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Opt Commun 281(6):1725–1731

    Article  Google Scholar 

  27. Huang L, Tian H, Yang D et al (2014) Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Optics Commun 332:42–49

    Article  Google Scholar 

  28. Lai WC, Chakravarty S, Zou Y et al (2012) Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. Opt Lett 37(7):1208–1210

    Article  Google Scholar 

  29. Dorfner D, Zabel T, Hürlimann T et al (2009) Photonic crystal nanostructures for optical biosensing applications. Biosens Bioelectron 24(18):3688–3692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, A., Mudgal, N., Sahu, S., Singh, G., Bhatnagar, S.K. (2022). Design of a Nanocavity Photonic Crystal Structure for Biosensing Application. In: Tiwari, M., Maddila, R.K., Garg, A.K., Kumar, A., Yupapin, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-16-2818-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2818-4_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2817-7

  • Online ISBN: 978-981-16-2818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics