Skip to main content

Silicon-On-Insulator Photonics Waveguide Design for Near-IR Evanescent Field-Based Blood Sensor

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 771))

  • 1026 Accesses

Abstract

Silicon-on-insulator-based photonics waveguides, namely Ridge, Rib, and Slot waveguides are explored for the blood sensing application in near-IR region. The absorption-based sensing principle has been adopted in the upper cladding/evanescent region of the waveguide. The finite element method-based simulation results, obtained through the COMSOL multiphysics software, have illustrated that the slot waveguide has the optimum performance for the absorption-based sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rifat AA, Ahmmed R, Bhowmik BB (2019) SOI waveguide-based biochemical sensors. Chapter 16

    Google Scholar 

  2. Fabricius N, Gauglitz G, Ingenhoff J (1992) A gas sensor based on an integrated optical Mach-Zehnder interferometer. Sens Actuators, B Chem 7:672–676

    Article  Google Scholar 

  3. Yebo NA, Lommens P, Hens Z, Baets R (2010) An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film. Opt Express 18:11859–11866

    Article  Google Scholar 

  4. Robinson JT, Chen L, Lipson M (2008) On-chip gas detection in silicon optical microcavities. Opt Express 16:4296–4301

    Article  Google Scholar 

  5. Soref RA, Emelett SJ, Buchwald WR (2006) Silicon waveguided components for the long-wave infrared region. J Opt A: Pure Appl Opt 8(10):840

    Article  Google Scholar 

  6. Tien E, Huang Y, Gao S, Song Q, Qian F, Kalyoncu SK, Boyraz O (2010) Discrete parametric band conversion in silicon for mid-infrared applications. Opt Express 18:21981–21989

    Article  Google Scholar 

  7. Baehr-Jones T, Spott A, Ilic R, Spott A, Penkov B, Asher W, Hochberg M (2010) Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt Express 18:12127–12135

    Article  Google Scholar 

  8. Li F, Jackson SD, Grillet C, Magi E, Hudson D, Madden SJ, Moghe Y, Brien CO, Read A, Duvall SG, Atanackovic P, Eggleton B, Moss D (2011) Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt Express 19:15212–15220

    Article  Google Scholar 

  9. Wang Z, Liu H, Huang N, Sun Q, Wen J, Li X (2013) Influence of three-photon absorption on Mid-infrared cross-phase modulation in silicon-on-sapphire waveguides. Opt Express 21:1840–1848

    Article  Google Scholar 

  10. Huang Y, Kalyoncu SK, Zhao Q, Torun R, Boyraz O (2014) Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors. Opt Commun 313:186–194

    Article  Google Scholar 

  11. Mere V, Selvaraja SK (2016) Germanium-on-glass waveguides for Mid-IR photonics. In: 13th international conference on fiber optics and photonics. OSA Technical Digest, Optical Society of America

    Google Scholar 

  12. Rowe DJ, Smith D, Wilkinson JS (2017) Complex refractive index spectra of whole blood and aqueous solutions of anticoagulants, analgesics and buffers in the mid-infrared. Sci Rep 7(7356)

    Google Scholar 

  13. Butt MA, Khonina SN, Kazanskiy NL (2018) Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J Mod Opt 65:174–178

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge National Institute of Technology Patna, and Science and Engineering Research Board, Department of Science and Technology, Government of India for providing COMSOL Multiphysics simulation software, used in the current simulation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veer Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandra, V., Choudhary, N., Ranjan, R. (2022). Silicon-On-Insulator Photonics Waveguide Design for Near-IR Evanescent Field-Based Blood Sensor. In: Tiwari, M., Maddila, R.K., Garg, A.K., Kumar, A., Yupapin, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-16-2818-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2818-4_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2817-7

  • Online ISBN: 978-981-16-2818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics