Skip to main content

A Total Variation Regularization Method for Inverse Source Problem with Uniform Noise

  • Conference paper
  • First Online:
Mathematical Methods in Image Processing and Inverse Problems (IPIP 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 360))

Included in the following conference series:

  • 480 Accesses

Abstract

The problem of inverse source problem is considered in this paper. The main aim of this problem is to determine the source density function from the state function which is corrupted by uniform noise. Under the framework of maximum a posteriori estimator, the problem can be converted into an optimization problem where the objective function is composed of an \(L_\infty \) norm and a total variation (TV) regularization term. By introducing an auxiliary variable, the optimization problem is further converted into a minimax problem. Then first order primal-dual method is applied to find the saddle point of the minimax problem. Numerical examples are given to demonstrate that our proposed method outperforms the other testing methods.

This work is supported by NSFC Grant No. 11871210, the Construct Program of the Key Discipline in Hunan Province, the SRF of Hunan Provincial Education Department (No.17A128)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Aujol, G. Gilboa, Constrained and SNR-based solutions for TV-Hilbert space image denoising. J. Math. Imaging Vis. 26(1), 217–237 (2006)

    Article  MathSciNet  Google Scholar 

  2. V. Akcelik, G. Biros, O. Ghattas, K. Long, B.G.V. Bloemen Waanders, A variational finite element method for source inversion for convective-diffusive transport. Finite Elem. Anal. Des. 39(8), 683–705 (2003)

    Google Scholar 

  3. M. Bertalmio, V. Caselles, B. Rougé, A. Solé, TV based image restoration with local constraints. J. Sci. Comput. 19(1–3), 95–122 (2003)

    Article  MathSciNet  Google Scholar 

  4. D. Bertsekas, Convex Optimization Theory (Athena Scientific Belmont, MA, 2009)

    MATH  Google Scholar 

  5. A. Badia, T. Ha-Duong, An inverse source problem in potential analysis. Inverse Probl. (2000)

    Google Scholar 

  6. P. Blomgren, T. Chan, Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7(3), 304–309 (1998)

    Article  Google Scholar 

  7. X. Cai, R. Chan, M. Nikolova, T. Zeng, A three-stage approach for segmenting degraded color images: Smoothing, lifting and Thresholding (SlaT). J. Sci. Comput. 72(3), 1313–1332 (2017)

    Article  MathSciNet  Google Scholar 

  8. X. Cai, R. Chan, T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  Google Scholar 

  9. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  10. C. Clason, \(L_\infty \) fitting for inverse problems with uniform noise. Inverse Probl 28(10) (2012)

    Google Scholar 

  11. G. Chen, M. Teboulle, A proximal-based decomposition method for convex minimization problems. Math. Program. Ser. A 64(1):81–101 (1994)

    Google Scholar 

  12. P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting . Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Google Scholar 

  13. H. Engl, R. Ramlau, Regularization of Inverse Problems, Encyclopedia of Applied and Computational Mathematics (Springer, Berlin, Heidelberg, 2015)

    Google Scholar 

  14. J. Eckstein, D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. Ser. A 55(3), 293–318 (1992)

    Google Scholar 

  15. Q. Hu, S. Shu, J. Zou, A new variational approach for inverse source problems. Numer. Math.-Theory Methods Appl. 12(2), 331–347 (2019)

    Article  MathSciNet  Google Scholar 

  16. V. Isakov, Inverse source problems. Ams Ebooks Prog. 34, 191 (1990)

    MathSciNet  MATH  Google Scholar 

  17. V. Isakov, Inverse problems for partial differential equations. Appl. Math. Sci. 703(45), 93–98 (1979)

    MathSciNet  Google Scholar 

  18. Y. Keung, J. Zou, Numerical identifications of parameters in parabolic systems. Inverse Probl. 14(1), 83–100 (1998)

    Article  MathSciNet  Google Scholar 

  19. Y. Keung, J. Zou, X. Wang, An efficient linear solver for nonlinear parameter identification problems. J. Sci. Comput. (1998)

    Google Scholar 

  20. E. Lavrent, M. Jn, et al., Inverse Probl. Math. Phys. (1987)

    Google Scholar 

  21. X. Liu, Z. Chen, Y. Wen, A dual method for uniform noise removal base on \(L_\infty \) norm constraint, pp. 1346–1350, 07 (2017)

    Google Scholar 

  22. R. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  Google Scholar 

  23. R. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  24. L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  25. A. Tikhonov, A. Goncharsky, V. Stepanov. Numerical Methods for the Solution of Ill-Posed Problems (Kluwer Academic Publishers, 1995)

    Google Scholar 

  26. P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)

    Article  MathSciNet  Google Scholar 

  27. Y. Wen, W. Ching, M. Ng, A semi-smooth newton method for inverse problem with uniform noise. J. Sci. Comput. 75(2), 713–732 (2018)

    Google Scholar 

  28. Y. Yang, N. Galatsanos, A. Katsaggelos, Projection-based spatially adaptive reconstruction of block-transform compressed images. IEEE Trans. Image Process. 4(7), 896–908 (1995)

    Article  Google Scholar 

  29. L. Zhen, E. Delp, Block artifact reduction using a transform-domain Markov random field model. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1583–1593 (2005)

    Article  Google Scholar 

  30. M. Zhu, Fast Numerical Algorithms for Total Variation Based Image Restoration. Ph.D. thesis, University of California, Los Angeles (2008)

    Google Scholar 

  31. M. Zhu, T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report, pp. 08–34 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, H., Wen, YW. (2021). A Total Variation Regularization Method for Inverse Source Problem with Uniform Noise. In: Tai, XC., Wei, S., Liu, H. (eds) Mathematical Methods in Image Processing and Inverse Problems. IPIP 2018. Springer Proceedings in Mathematics & Statistics, vol 360. Springer, Singapore. https://doi.org/10.1007/978-981-16-2701-9_5

Download citation

Publish with us

Policies and ethics