Skip to main content

General Remarks of Soft-Matter Nanotubes

  • Chapter
  • First Online:
Smart Soft-Matter Nanotubes

Part of the book series: Nanostructure Science and Technology ((NST))

  • 363 Accesses

Abstract

Nanotubes have been undoubtedly becoming one of representative buzzwords in nano and nanobiotechnology. Carbon nanotubes made of carbon atom as well as tobacco mosaic virus self-assembled from identical protein units may come to your mind when you hear nanotubes. Moreover, diverse tubular architectures made of organic molecules including amphiphiles, synthetic polymers, proteins, and DNAs have recently emerged in large numbers and have demonstrated novel application fields that are different from those of the carbon nanotubes. Namely, we enter a new era, in which nanotubular structures can be fabricated from every substances and atomic elements. This chapter focuses on soft-matter nanotubes (SMNTs) made of organic molecular building blocks as mother components. In the beginning, the characteristic features of the SMNTs are compared with those of other nanoporous materials in terms of the surface features, interiors, and scaffolds. Historical background and representative fabrication method of the SMNTs are also discussed. Then, the author introduces the classification of formation pathways for the SMNT. Regarding each formation pathway, the major part of this chapter describes the characteristics of molecular building blocks, molecular arrangement in SMNT walls, one-dimensional interior nanospace, and diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayden O, Nielsch K (2011) Molecular- and nano-tubes. Springer, Heidelberg. https://doi.org/10.1007/978-1-4419-9443-1

    Article  Google Scholar 

  2. Sachse C, Chen JZ, Coureux PD, Stroupe ME, Fandrich M, Grigorieff N (2007) High-resolution electron microscopy of helical specimens: a fresh look at Tobacco mosaic virus. J Mol Biol 371:812–835. https://doi.org/10.1016/j.jmb.2007.05.088

    Article  CAS  Google Scholar 

  3. Shimizu T, Minamikawa H, Kogiso M, Aoyagi M, Kameta N, Ding W, Masuda M (2014) Self-organized nanotube materials and their application in bioengineering. Polym J 46:831–858. https://doi.org/10.1038/Pj.2014.72

    Article  CAS  Google Scholar 

  4. Shimizu T, Kameta N, Ding W, Masuda M (2016) Supramolecular self-assembly into biofunctional soft nanotubes: from bilayers to monolayers. Langmuir 32:12242–12264. https://doi.org/10.1021/acs.langmuir.6b01632

    Article  CAS  Google Scholar 

  5. Shimizu T (2018) Self-assembly of discrete organic nanotubes. Bull Chem Soc Jpn 91:623–668. https://doi.org/10.1246/bcsj.20170424

    Article  CAS  Google Scholar 

  6. Shimizu T, Ding W, Kameta N (2020) Soft-matter nanotubes: a platform for diverse functions and applications. Chem Rev 120:2347–2407. https://doi.org/10.1021/acs.chemrev.9b00509

    Article  CAS  Google Scholar 

  7. Meyer F, Raquez JM, Verge P, de Arenaza IM, Coto B, Van Der Voort P, Meaurio E, Dervaux B, Sarasua JR, Du Prez F, Dubois P (2011) Poly(ethylene oxide)-b-poly(L-lactide) Diblock copolymer/carbon nanotube-based nanocomposites: LiCl as supramolecular structure-directing agent. Biomacromol 12:4086–4094. https://doi.org/10.1021/bm201149g

    Article  CAS  Google Scholar 

  8. Kitao T, Zhang Y, Kitagawa S, Wang B, Uemura T (2017) Hybridization of MOFs and polymers. Chem Soc Rev 46:3108–3133. https://doi.org/10.1039/c7cs00041c

    Article  CAS  Google Scholar 

  9. Schoedel A, Li M, Li D, O’Keeffe M, Yaghi OM (2016) Structures of metal-organic frameworks with rod secondary building units. Chem Rev 116:12466–12535. https://doi.org/10.1021/acs.chemrev.6b00346

    Article  CAS  Google Scholar 

  10. Diercks CS, Yaghi OM (2017) The atom, the molecule, and the covalent organic framework. Science 355, eaal1585. https://doi.org/10.1126/science.aal1585

  11. Lohse MS, Bein T (2018) Covalent organic frameworks: structures, synthesis, and applications. Adv Funct Mater 28:1705553. https://doi.org/10.1002/adfm.201705553

    Article  CAS  Google Scholar 

  12. Dusselier M, Davis ME (2018) Small-pore zeolites: synthesis and catalysis. Chem Rev 118:5265–5329. https://doi.org/10.1021/acs.chemrev.7b00738

    Article  CAS  Google Scholar 

  13. Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI (2018) Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem Rev 118:2718–2768. https://doi.org/10.1021/acs.chemrev.7b00344

    Article  CAS  Google Scholar 

  14. Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A (2018) Recent Advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 47:2680–2721. https://doi.org/10.1039/c7cs00787f

    Article  CAS  Google Scholar 

  15. Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q (2018) New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 47:8766–8803. https://doi.org/10.1039/c8cs00658j

    Article  CAS  Google Scholar 

  16. Shamzhy M, Opanasenko M, Concepcion P, Martinez A (2019) New trends in tailoring active sites in zeolite-based catalysts. Chem Soc Rev 48:1095–1149. https://doi.org/10.1039/c8cs00887f

    Article  CAS  Google Scholar 

  17. Kameta N, Minamikawa H, Masuda M (2011) Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space. Soft Matter 7:4539–4561. https://doi.org/10.1039/c0sm01559h

    Article  CAS  Google Scholar 

  18. Komatsu T (2012) Protein-based nanotubes for biomedical applications. nanoscale 4:1910–1918. https://doi.org/10.1039/c1nr11224d

    Article  CAS  Google Scholar 

  19. Babu SS, Praveen VK, Ajayaghosh A (2014) Functional π-gelators and their applications. Chem Rev 114:1973–2129. https://doi.org/10.1021/cr400195e

    Article  CAS  Google Scholar 

  20. Ding W, Minamikawa H, Kameta N, Wada M, Masuda M, Shimizu T (2015) Spontaneous nematic alignment of a lipid nanotube in aqueous solutions. Langmuir 31:1150–1154. https://doi.org/10.1021/la5042772

    Article  CAS  Google Scholar 

  21. Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T (2004) Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304:1481–1483. https://doi.org/10.1126/science.1097789

    Article  CAS  Google Scholar 

  22. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966. https://doi.org/10.1126/science.266.5193.1961

    Article  CAS  Google Scholar 

  23. Shimizu T (2008) Self-assembled organic nanotubes: toward attoliter chemistry. J Polym Sci Part A: Polym Chem 46:2601–2611. https://doi.org/10.1002/Pola.22652

    Article  CAS  Google Scholar 

  24. Harada A, Li J, Kamachi M (1993) Synthesis of a tubular polymer from threaded cyclodextrins. Nature 364:516–518. https://doi.org/10.1038/364516a0

    Article  CAS  Google Scholar 

  25. Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Self-assembling organic nanotubes. Angew Chem Int Ed 40:988–1011. https://doi.org/10.1002/1521-3773(20010316)40:6%3c988::AID-ANIE9880%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  26. Remskar M, Mrzel A, Skraba Z, Jesih A, Ceh M, Demsar J, Stadelmann P, Levy F, Mihailovic D (2001) Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292:479–481. https://doi.org/10.1126/science.1059011

    Article  CAS  Google Scholar 

  27. Amara MS, Paineau E, Rouziere S, Guiose B, Krapf MEM, Tache O, Launois P, Thill A (2015) Hybrid, tunable-diameter, metal oxide nanotubes for trapping of organic molecules. Chem Mater 27:1488–1494. https://doi.org/10.1021/cm503428q

    Article  CAS  Google Scholar 

  28. Ricci MA, Bruni F, Gallo P, Rovere M, Soper AK (2000) Water in confined geometries: experiments and simulations. J Phys Condens Matter 12:A345–A350. https://doi.org/10.1088/0953-8984/12/8a/346

    Article  CAS  Google Scholar 

  29. Scodinu A, Fourkas JT (2002) Comparison of the orientational dynamics of water confined in hydrophobic and hydrophilic nanopores. J Phys Chem B 106:10292–10295. https://doi.org/10.1021/jp026349l

    Article  CAS  Google Scholar 

  30. Ito T, Sun L, Henriquez RR, Crooks RM (2004) A carbon nanotube-based Coulter nanoparticle counter. Acc Chem Res 37:937–945. https://doi.org/10.1021/ar040108+

    Article  CAS  Google Scholar 

  31. Goldberger J, Fan R, Yang PD (2006) Inorganic nanotubes: a novel platform for nanofluidics. Acc Chem Res 39:239–248. https://doi.org/10.1021/ar040274h

    Article  CAS  Google Scholar 

  32. Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H, Takeuchi S, Noji H (2005) Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat Biotechnol 23:361–365. https://doi.org/10.1038/nbt1072

    Article  CAS  Google Scholar 

  33. Kunitake T, Okahata Y (1977) A totally synthetic bilayer membrane. J Am Chem Soc 99:3860–3861. https://doi.org/10.1021/ja00453a066

    Article  CAS  Google Scholar 

  34. Fuhrhop JH, Koening J (1994) Membranes and molecular assemblies: the synkinetic approach. Monographs in supramolecular chemistry. The Royal Society of Chemistry, Cambridge. https://doi.org/10.1039/9781847551368

  35. Kunitake T (1992) Synthetic bilayer membrane: molecular design, self-organization, and application. Angew Chem Int Ed 31:709–726. https://doi.org/10.1002/anie.199207091

    Article  Google Scholar 

  36. Fuhrhop JH, Helfrich W (1993) Fluid and solid fibers made of lipid molecular bilayers. Chem Rev 93:1565–1582. https://doi.org/10.1021/cr00020a008

    Article  CAS  Google Scholar 

  37. Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 105:1401–1443. https://doi.org/10.1021/cr030072j

    Article  CAS  Google Scholar 

  38. Barclay TG, Constantopoulos K, Matisons J (2014) Nanotubes self-assembled from amphiphilic molecules via helical intermediates. Chem Rev 114:10217–10291. https://doi.org/10.1021/Cr400085m

    Article  CAS  Google Scholar 

  39. Nakashima N, Asakuma S, Kim JM, Kunitake T (1984) Helical superstructures are formed from chiral ammonium bilayers. Chem Lett 13:1709–1712. https://doi.org/10.1246/cl.1984.1709

    Article  Google Scholar 

  40. Nakashima N, Asakuma S, Kunitake T (1985) Optical microscopic study of helical superstructures of chiral bilayer membranes. J Am Chem Soc 107:509–510. https://doi.org/10.1021/ja00288a043

    Article  CAS  Google Scholar 

  41. Yamada K, Ihara H, Ide T, Fukumoto T, Hirayama C (1984) Formation of helical super structure from single-walled bilayers by amphiphiles with oligo-l-glutamic acid-head group. Chem Lett 13:1713–1716. https://doi.org/10.1246/cl.1984.1713

    Article  Google Scholar 

  42. Yager P, Schoen PE (1984) Formation of tubules by polymerizable surfactant. Mol Cryst Liq Cryst 106:371–381. https://doi.org/10.1080/00268948408071454

    Article  CAS  Google Scholar 

  43. Fuhrhop JH, Spiroski D, Boettcher C (1993) Molecular monolayer rods and tubules made of a-(L-Lysine),ω-(Amino) bolaamphiphiles. J Am Chem Soc 115:1600–1601. https://doi.org/10.1021/ja00057a069

    Article  CAS  Google Scholar 

  44. Shimizu T, Kogiso M, Masuda M (1996) Vesicle assembly in microtubes. Nature 383:487–488. https://doi.org/10.1038/383487b0

    Article  CAS  Google Scholar 

  45. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C-60—Buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  46. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  47. Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C-60 in carbon nanotubes. Nature 396:323–324. https://doi.org/10.1038/24521

    Article  CAS  Google Scholar 

  48. Bangham AD, Horne RW (1964) Negative staining of phospholipids + their structural modification by-surface active agents as observed in electron microscope. J Mol Biol 8:660–668. https://doi.org/10.1016/S0022-2836(64)80115-7

    Article  CAS  Google Scholar 

  49. Pool R (1990) Physicists tackle theory, tubes, and temperature. Science 247:1410–1412. https://doi.org/10.1126/science.247.4949.1410-a

    Article  Google Scholar 

  50. Kogiso M, Zhou Y, Shimizu T (2007) Instant preparation of self-assembled metal-complexed lipid nanotubes that act as templates to produce metal oxide nanotubes. Adv Mater 19:242–246. https://doi.org/10.1002/adma.200601117

    Article  CAS  Google Scholar 

  51. Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387. https://doi.org/10.1103/PhysRevLett.85.5384

    Article  CAS  Google Scholar 

  52. Huang K, Rzayev J (2009) Well-defined organic nanotubes from multicomponent bottlebrush copolymers. J Am Chem Soc 131:6880–6885. https://doi.org/10.1021/ja901936g

    Article  CAS  Google Scholar 

  53. Martin CR (1995) Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res 28:61–68. https://doi.org/10.1021/ar00050a002

    Article  CAS  Google Scholar 

  54. Steinhart M, Wehrspohn RB, Gosele U, Wendorff JH (2004) Nanotubes by template wetting: a modular assembly system. Angew Chem Int Ed 43:1334–1344. https://doi.org/10.1002/anie.200300614

    Article  CAS  Google Scholar 

  55. Shimizu T, Hato M (1993) Self-assembling propertise of synthetic peptidic lipids. Biochim Biophys Acta 1147:50–58. https://doi.org/10.1016/0005-2736(93)90315-Q

    Article  CAS  Google Scholar 

  56. Chung DS, Benedek GB, Konikoff FM, Donovan JM (1993) Elastic free energy of anisotropic helical ribbons as metastable intermediates in the crystallization of cholesterol. Proc Natl Acad Sci USA 90:11341–11345. https://doi.org/10.1073/pnas.90.23.11341

    Article  CAS  Google Scholar 

  57. Ziserman L, Lee HY, Raghavan SR, Mor A, Danino D (2011) Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J Am Chem Soc 133:2511–2517. https://doi.org/10.1021/Ja107069f

    Article  CAS  Google Scholar 

  58. Slater JL, Huang CH (1988) Interdigitated bilayer-membranes. Prog Lipid Res 27:325–359. https://doi.org/10.1016/0163-7827(88)90010-0

    Article  CAS  Google Scholar 

  59. John G, Masuda M, Okada Y, Yase K, Shimizu T (2001) Nanotube formation from renewable resources via coiled nanofibers. Adv Mater 13:715–718. https://doi.org/10.1002/1521-4095(200105)13:10%3c715::AID-ADMA715%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  60. John G, Jung JH, Minamikawa H, Yoshida K, Shimizu T (2002) Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly. Chem Eur J 8:5494–5500. https://doi.org/10.1002/1521-3765(20021202)8:23%3c5494::AID-CHEM5494%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  61. John G, Mason M, Ajayan PM, Dordick JS (2004) Lipid-based nanotubes as functional architectures with embedded fluorescence and recognition capabilities. J Am Chem Soc 126:15012–15013. https://doi.org/10.1021/ja0446449

    Article  CAS  Google Scholar 

  62. Kamiya S, Minamikawa H, Jung JH, Yang B, Masuda M, Shimizu T (2005) Molecular structure of glucopyranosylamide lipid and nanotube morphology. Langmuir 21:743–750. https://doi.org/10.1021/la047765v

    Article  CAS  Google Scholar 

  63. Yui H, Minamikawa H, Danev R, Nagayama K, Kamiya S, Shimizu T (2008) Growth process and molecular packing of a self-assembled lipid nanotube: phase-contrast transmission electron microscopy and XRD analyses. Langmuir 24:709–713. https://doi.org/10.1021/La702488u

    Article  CAS  Google Scholar 

  64. Israelachvili JN (1985) Intrmolecular and surface forces: with application to colloidal and biological systems . Academic, London

    Google Scholar 

  65. Aigouy PT, Costeseque P, Sempere R, Senac T (1995) Caractérisation Structurale et Évolution Thermiquue de I’Acide Amino-11-undécanoïque(C11H23NO2.1,5H2O). Acta Cystallogr B51:55–61. https://doi.org/10.1107/S010876819400159X

    Article  CAS  Google Scholar 

  66. Szafran M, Dega-Szafran Z, Katrusiak A, Buczak G, Glowiak T, Sitkowski J, Stefaniak L (1998) Electrostatic interactions and conformations of zwitterionic pyridinium alkanoates. J Org Chem 63:2898–2908. https://doi.org/10.1021/jo9720694

    Article  CAS  Google Scholar 

  67. Sim GA (1955) The crystal structure of 11-amino-undecanoic acid hydrobromide hemihydrate. Acta Crystallogr 8:833–840. https://doi.org/10.1107/S0365110x5500248x

    Article  CAS  Google Scholar 

  68. Masuda M, Shimizu T (2001) Multilayer structure of unsymmetrical monolayer lipid membrane with head-to-tail interface. Chem Commun 2001:2442–2443. https://doi.org/10.1039/B106581P

    Article  Google Scholar 

  69. Masuda M, Yoza K, Shimizu T (2005) Polymorphism of monolayer lipid membrane structures made from unsymmetrical bolaamphiphiles. Carbohydr Res 340:2502–2509. https://doi.org/10.1016/j.carres.2005.08.005

    Article  CAS  Google Scholar 

  70. Ding W, Kameta N, Minamikawa H, Wada M, Shimizu T, Masuda M (2012) Hybrid organic nanotubes with dual functionalities localized on cylindrical nanochannels control the release of doxorubicin. Adv Healthcare Mater 1:699–706. https://doi.org/10.1002/adhm.201200133

    Article  CAS  Google Scholar 

  71. Kameta N, Masuda M, Shimizu T (2012) Soft nanotube hydrogels functioning as artificial chaperones. ACS Nano 6:5249–5258. https://doi.org/10.1021/Nn301041y

    Article  CAS  Google Scholar 

  72. Kameta N, Masuda M, Minamikawa H, Goutev NV, Rim JA, Jung JH, Shimizu T (2005) Selective construction of supramolecular nanotube hosts with cationic inner surfaces. Adv Mater 17:2732–2736. https://doi.org/10.1002/adma.200501092

    Article  CAS  Google Scholar 

  73. Kameta N, Masuda M, Minamikawa H, Mishima Y, Yamashita I, Shimizu T (2007) Functionalizable organic nanochannels based on lipid nanotubes: encapsulation and nanofluidic behavior of biomacromolecules. Chem Mater 19:3553–3560. https://doi.org/10.1021/Cm070626p

    Article  CAS  Google Scholar 

  74. Masuda M, Shimizu T (2004) Lipid nanotubes and microtubes: experimental evidence for unsymmetrical monolayer membrane formation from unsymmetrical bolaamphiphiles. Langmuir 20:5969–5977. https://doi.org/10.1021/la049085y

    Article  CAS  Google Scholar 

  75. Namba K, Stubbs G (1986) Structure of tobacco mosaic-virus at 3.6-a resolution—implications for assembly. Science 231:1401–1406. https://doi.org/10.1126/science.3952490

    Article  CAS  Google Scholar 

  76. Fuhrhop JH, Wang T (2004) Bolaamphiphiles. Chem Rev 104:2901–2938. https://doi.org/10.1021/cr030602b

    Article  CAS  Google Scholar 

  77. Kameta N, Masuda M, Minamikawa H, Shimizu T (2007) Self-assembly and thermal phase transition behavior of unsymmetrical bolaamphiphiles having glucose- and amino-hydrophilic headgroups. Langmuir 23:4634–4641. https://doi.org/10.1021/La063542o

    Article  CAS  Google Scholar 

  78. Kameta N, Yoshida K, Masuda M, Shimizu T (2009) Supramolecular nanotube hydrogels: remarkable resistance effect of confined proteins to denaturants. Chem Mater 21:5892–5898. https://doi.org/10.1021/Cm903108h

    Article  CAS  Google Scholar 

  79. Gu Q, Zou AH, Yuan CW, Guo R (2003) Effects of a bolaamphiphile on the structure of phosphatidylcholine liposomes. J Colloid Interface Sci 266:442–447. https://doi.org/10.1016/S0021-9797(03)00649-0

    Article  CAS  Google Scholar 

  80. Baek K, Kim Y, Kim H, Yoon M, Hwang I, Ko YH, Kim K (2010) Unconventional U-shaped conformation of a bolaamphiphile embedded in a synthetic host. Chem Commun 46:4091–4093. https://doi.org/10.1039/c0cc00752h

    Article  CAS  Google Scholar 

  81. Masuda M, Vill V, Shimizu T (2000) Conformational and thermal phase behavior of oligomethylene chains constrained by carbohydrate hygrogen-bond networks. J Am Chem Soc 122:12327–12333. https://doi.org/10.1021/ja001884p

    Article  CAS  Google Scholar 

  82. Snyder RG, Hsu SL, Krimm S (1978) Vibrational-spectra in C-H stretching region and structure of polymethylene chain. Spectrochim Acta Part A Mol Biomol Spectr 34:395–406. https://doi.org/10.1016/0584-8539(78)80167-6

    Article  Google Scholar 

  83. Snyder RG, Strauss HL, Elliger CA (1982) C-H stretching modes and the structure of normal-alkyl chains. 1. Long disordered chains. J Phys Chem 86:5145–5150. https://doi.org/10.1021/J100223a018

    Article  CAS  Google Scholar 

  84. Mantsch HH, Mcelhaney RN (1991) Phospholipid phase-transitions in model and biological-membranes as studied by infrared-spectroscopy. Chem Phys Lipids 57:213–226. https://doi.org/10.1016/0009-3084(91)90077-O

    Article  CAS  Google Scholar 

  85. Garti N, Sato K (1988) Crystallization and Polymorphism of Fats and Fatty Acids. Marcel Dekker

    Google Scholar 

  86. Yamada N, Okuyama K, Serizawa T, Kawasaki M, Oshima S (1996) Periodic change in absorption maxima due to different chain packing between the bilayers of amphiphiles possessing even and odd numbers of carbons in the hydrophobic chain. J Chem Soc, Perkin Trans 2:2707–2714. https://doi.org/10.1039/P29960002707

    Article  Google Scholar 

  87. Blout ER, Linsley SG (1952) Infrared spectra and the structure of glycine and leucine peptides. J Am Chem Soc 74:1946–1951. https://doi.org/10.1021/ja01128a023

    Article  CAS  Google Scholar 

  88. Elliott A, Malcolm BR (1956) Infra-red studies of polypeptides related to silk. Trans Faraday Soc 52:528–536. https://doi.org/10.1039/tf9565200528

    Article  CAS  Google Scholar 

  89. Crick FHC, Rich A (1955) Structure of polyglycine-II. Nature 176:780–781. https://doi.org/10.1038/176780a0

    Article  CAS  Google Scholar 

  90. Bamford CH, Brown L, Cant EM, Elliott A, Hanby WE, Malcolm BR (1955) Structure of polyglycine. Nature 176:396–397. https://doi.org/10.1038/176396a0

    Article  CAS  Google Scholar 

  91. Shimizu T, Kogiso M, Masuda M (1997) Noncovalent formation of polyglycine II-type structure by hexagonal self-assembly of linear polymolecular chains. J Am Chem Soc 119:6209–6210. https://doi.org/10.1021/ja970844r

    Article  CAS  Google Scholar 

  92. Kameta N, Mizuno G, Masuda M, Minamikawa H, Kogiso M, Shimizu T (2007) Molecular monolayer nanotubes having 7–9 nm inner diameters covered with different inner and outer surfaces. Chem Lett 36:896–897. https://doi.org/10.1246/Cl.2007.896

    Article  CAS  Google Scholar 

  93. Hamley IW (2011) Self-assembly of amphiphilic peptides. Soft Matter 7:4122–4138. https://doi.org/10.1039/c0sm01218a

    Article  CAS  Google Scholar 

  94. Hamley IW (2014) Peptide nanotubes. Angew Chem Int Ed 53:6866–6881. https://doi.org/10.1002/anie.201310006

  95. Boettcher C, Schade B, Fuhrhop J-H (2001) Comparative cryo-electron microscopy of noncovalent N-dodecanoyl-(D- and L-) serine assemblies in vitreous toluene and water. Langmuir 17:873–877. https://doi.org/10.1021/la001054p

    Article  CAS  Google Scholar 

  96. Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG (2003) Exploiting amyloid fibril lamination for nanotube self-assembly. J Am Chem Soc 125:6391–6393. https://doi.org/10.1021/ja0341642

    Article  CAS  Google Scholar 

  97. Ni R, Childers WS, Hardcastle KI, Mehta AK, Lynn DG (2012) Remodeling cross-beta nanotube surfaces with peptide/lipid chimeras. Angew Chem Int Ed 51:6635–6638. https://doi.org/10.1002/anie.201201173

    Article  CAS  Google Scholar 

  98. Bucak S, Cenker C, Nasir I, Olsson U, Zackrisson M (2009) Peptide nanotube nematic phase. Langmuir 25:4262–4265. https://doi.org/10.1021/la804175h

    Article  CAS  Google Scholar 

  99. Middleton DA, Madine J, Castelletto V, Hamley IW (2013) Insights into the molecular architecture of a peptide nanotube using FTIR and solid-state NMR spectroscopic measurements on an aligned sample. Angew Chem Int Ed 52:10537–10540. https://doi.org/10.1002/anie.201301960

    Article  CAS  Google Scholar 

  100. Lu Q, Kim Y, Bassim N, Collins GE (2015) Impact of confinement on proteins concentrated in lithocholic acid based organic nanotubes. J Colloid Interface Sci 454:97–104. https://doi.org/10.1016/j.jcis.2015.05.004

    Article  CAS  Google Scholar 

  101. Liang W, He S, Fang J (2014) Self-assembly of J-aggregate nanotubes and their applications for sensing dopamine. Langmuir 30:805–811. https://doi.org/10.1021/la404022q

    Article  CAS  Google Scholar 

  102. Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S (2012) Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem Soc Rev 41:6023–6041. https://doi.org/10.1039/C2cs35172b

    Article  CAS  Google Scholar 

  103. Yagai S, Yamauchi M, Kobayashi A, Karatsu T, Kitamura A, Ohba T, Kikkawa Y (2012) Control over hierarchy levels in the self-assembly of stackable nanotoroids. J Am Chem Soc 134:18205–18208. https://doi.org/10.1021/Ja308519b

    Article  CAS  Google Scholar 

  104. Tu S, Kim SH, Joseph J, Modarelli DA, Parquette JR (2011) Self-assembly of a donor-acceptor nanotube. a strategy to create bicontinuous arrays. J Am Chem Soc 133:19125–19130. https://doi.org/10.1021/ja205868b

    Article  CAS  Google Scholar 

  105. Kameta N, Masuda M, Shimizu T (2015) Photoinduced morphological transformations of soft nanotubes. Chem Eur J 21:8832–8839. https://doi.org/10.1002/chem.201500430

    Article  CAS  Google Scholar 

  106. Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD (2008) In vitro self-assembly from a simple protein of tailorable nanotubes building block. Proc Natl Acad Sci USA 105:3733–3738. https://doi.org/10.1073/pnas.0712247105

    Article  CAS  Google Scholar 

  107. Miranda FF, Iwasaki K, Akashi S, Sumitomo K, Kobayashi M, Yamashita I, Tame JRH, Heddle JG (2009) A Self-Assembled protein nanotube with high aspect ratio. Small 5:2077–2084. https://doi.org/10.1002/smll.200900667

    Article  CAS  Google Scholar 

  108. Ghadiri MR, Granja JR, Milligan RA, Mcree DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327. https://doi.org/10.1038/366324a0

    Article  CAS  Google Scholar 

  109. Ghadiri MR (1995) Self-assembled nanoscale tubular ensembles. Adv Mater 7:675–677. https://doi.org/10.1002/adma.19950070718

    Article  CAS  Google Scholar 

  110. Wolf E, Kim PS, Berger B (1997) MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6:1179–1189. https://doi.org/10.1002/pro.5560060606

    Article  CAS  Google Scholar 

  111. Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP (2013) Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J Am Chem Soc 135:15565–15578. https://doi.org/10.1021/ja4074529

    Article  CAS  Google Scholar 

  112. Liu J, Zheng Q, Deng Y, Cheng CS, Kallenbach NR, Lu M (2006) A seven-helix coiled coil. Proc Natl Acad Sci USA 103:15457–15462. https://doi.org/10.1073/pnas.0604871103

    Article  CAS  Google Scholar 

  113. Kimizuka N, Kawasaki T, Hirata K, Kunitake K (1995) Tube-like nanostructures composed of networks of complementary hydrogen bonds. J Am Chem Soc 117:6360–6361. https://doi.org/10.1021/ja00128a027

    Article  CAS  Google Scholar 

  114. Percec V, Ahn CH, Unger G, Yeardley DJP, Moeller M, Sheiko SS (1998) Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391:161–164. https://doi.org/10.1038/34384

    Article  CAS  Google Scholar 

  115. Beingessner RL, Fan YW, Fenniri H (2016) Molecular and supramolecular chemistry of rosette nanotubes. RSC Adv 6:75820–75838. https://doi.org/10.1039/c6ra16315g

    Article  CAS  Google Scholar 

  116. Jonkheijm P, Miura A, Zdanowska M, Hoeben FJ, De Feyter S, Schenning AP, De Schryver FC, Meijer EW (2004) π-conjugated oligo-(p-phenylenevinylene) rosettes and their tubular self-assembly. Angew Chem Int Ed 43:74–78. https://doi.org/10.1002/anie.200352790

    Article  CAS  Google Scholar 

  117. Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A (2005) Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J Am Chem Soc 127:11134–11139. https://doi.org/10.1021/ja052645a

    Article  CAS  Google Scholar 

  118. Block MAB, Kaiser C, Khan A, Hecht S (2005) Discrete organic nanotubes based on a combination of covalent and non-covalent approaches. Top Curr Chem 245:89–150. https://doi.org/10.1007/b98167

    Article  CAS  Google Scholar 

  119. Huang Z, Kang SK, Banno M, Yamaguchi T, Lee D, Seok C, Yashima E, Lee M (2012) Pulsating tubules from noncovalent macrocycles. Science 337:1521–1526. https://doi.org/10.1126/science.1224741

    Article  CAS  Google Scholar 

  120. Wang Y, Huang Z, Kim Y, He Y, Lee M (2014) Guest-driven inflation of self-assembled nanofibers through hollow channel formation. J Am Chem Soc 136:16152–16155. https://doi.org/10.1021/ja510182x

    Article  CAS  Google Scholar 

  121. Kim Y, Kang J, Shen B, Wang Y, He Y, Lee M (2015) Open-closed switching of synthetic tubular pores. Nat Commun 6:8650. https://doi.org/10.1038/ncomms9650

    Article  CAS  Google Scholar 

  122. Pisula W, Kastler M, Yang C, Enkelmann V, Mullen K (2007) Columnar mesophase formation of cyclohexa-m-phenylene-based macrocycles. Chem Asian J 2:51–56. https://doi.org/10.1002/asia.200600338

    Article  CAS  Google Scholar 

  123. Gubitosi M, D’Annibale A, Schillen K, Olsson U, Pavel NV, Galantini L (2017) On the stability of lithocholate derivative supramolecular tubules. Rsc Adv 7:512–517. https://doi.org/10.1039/c6ra26092f

    Article  CAS  Google Scholar 

  124. Kameta N, Akiyama H, Masuda M, Shimizu T (2016) Effect of photoinduced size changes on protein refolding and transport abilities of soft nanotubes. Chem Eur J 22:7198–7205. https://doi.org/10.1002/chem.201504613

    Article  CAS  Google Scholar 

  125. Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–6893. https://doi.org/10.1039/c4cs00164h

    Article  CAS  Google Scholar 

  126. Brea RJ, Reiriz C, Granja JR (2010) Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Chem Soc Rev 39:1448–1456. https://doi.org/10.1039/b805753m

    Article  CAS  Google Scholar 

  127. Chapman R, Jolliffe KA, Perrier S (2011) Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polym Chem 2:1956–1963. https://doi.org/10.1039/c1py00202c

    Article  CAS  Google Scholar 

  128. Huang K, Rzayev J (2011) Charge and size selective molecular transport by amphiphilic organic nanotubes. J Am Chem Soc 133:16726–16729. https://doi.org/10.1021/ja204296v

    Article  CAS  Google Scholar 

  129. Xu Y, Wang T, He Z, Zhong A, Huang K (2016) Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts. RSC Adv 6:39933–39939. https://doi.org/10.1039/c6ra05753e

    Article  CAS  Google Scholar 

  130. Kim Y, Li H, He Y, Chen X, Ma X, Lee M (2017) Collective helicity switching of a DNA-coat assembly. Nat Nanotechnol 12:551–558. https://doi.org/10.1038/Nnano.2017.42

    Article  CAS  Google Scholar 

  131. Kim HJ, Kim T, Lee M (2011) Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Acc Chem Res 44:72–82. https://doi.org/10.1021/ar100111n

    Article  CAS  Google Scholar 

  132. Prasanthkumar S, Zhang W, Jin W, Fukushima T, Aida T (2015) Selective synthesis of single- and multi-walled supramolecular nanotubes by using solvophobic/solvophilic controls: stepwise radial growth via “coil-on-tube” intermediates. Angew Chem Int Ed 54:11168–11172. https://doi.org/10.1002/anie.201505806

    Article  CAS  Google Scholar 

  133. Ishikawa K, Kameta N, Masuda M, Asakawa M, Shimizu T (2014) Boroxine nanotubes: moisture-sensitive morphological transformation and guest release. Adv Funct Mater 24:603–609. https://doi.org/10.1002/adfm.201302005

    Article  CAS  Google Scholar 

  134. Cao H, Duan P, Zhu X, Jiang J, Liu M (2012) Self-assembled organic nanotubes through instant gelation and universal capacity for guest molecule encapsulation. Chem Eur J 18:5546–5550. https://doi.org/10.1002/chem.201103654

    Article  CAS  Google Scholar 

  135. Yagai S (2015) Supramolecularly engineered functional π-assemblies based on complementary hydrogen-bonding interactions. Bull Chem Soc Jpn 88:28–58. https://doi.org/10.1246/bcsj.20140261

    Article  CAS  Google Scholar 

  136. Zhang J, Chen XF, Wei HB, Wan XH (2013) Tunable assembly of amphiphilic rod-coil block copolymers in solution. Chem Soc Rev 42:9127–9154. https://doi.org/10.1039/c3cs60192g

    Article  CAS  Google Scholar 

  137. Qian Z, Wang Z, Zhao N, Xu J (2018) Aerogels derived from polymer nanofibers and their applications. Macromol Rapid Commun 39:1700724. https://doi.org/10.1002/marc.201700724

    Article  CAS  Google Scholar 

  138. Su B, Wu Y, Jiang L (2012) The art of aligning one-dimensional (1D) nanostructures. Chem Soc Rev 41:7832–7856. https://doi.org/10.1039/c2cs35187k

    Article  CAS  Google Scholar 

  139. Otter R, Klinker K, Spitzer D, Schinnerer M, Barz M, Besenius P (2018) Folding induced supramolecular assembly into pH-responsive nanorods with a protein repellent shell. Chem Commun 54:401–404. https://doi.org/10.1039/c7cc08127h

    Article  CAS  Google Scholar 

  140. Furusho H, Mishima Y, Kameta N, Masuda M, Yamashita I, Shimizu T (2008) Lipid nanotube encapsulating method for two- and three-dimensional transmission electron microscopy analyses of cage-shaped proteins. Jpn J Appl Phys 47:394–399. https://doi.org/10.1143/Jjap.47.394

    Article  CAS  Google Scholar 

  141. Furusho H, Mishima Y, Kameta N, Yamane M, Masuda M, Asakawa M, Yamashita I, Mori H, Takaoka A, Shimizu T (2009) Lipid nanotube encapsulating method in low-energy scanning transmission electron microscopy analyses. Jpn J Appl Phys 48, 097001. https://doi.org/10.1143/Jjap.48.097001

  142. Chattopadhyay T, Kogiso M, Asakawa M, Shimizu T, Aoyagi M (2010) Copper(II)-coordinated organic nanotube: a novel heterogeneous catalyst for various oxidation reactions. Catal Commun 12:9–13. https://doi.org/10.1016/j.catcom.2010.07.013

    Article  CAS  Google Scholar 

  143. Chattopadhyay T, Kogiso M, Aoyagi M, Yui H, Asakawa M, Shimizu T (2011) Single bilayered organic nanotubes: anchors for production of a reusable catalyst with nickel ions. Green Chem 13:1138–1140. https://doi.org/10.1039/C1gc00005e

    Article  CAS  Google Scholar 

  144. Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M (2011) Self-assembly of Copper(II) ion-mediated nanotube and its supramolecular chiral catalytic behavior. Langmuir 27:13847–13853. https://doi.org/10.1021/La203110z

    Article  CAS  Google Scholar 

  145. Jiang J, Meng Y, Zhang L, Liu M (2016) Self-assembled single-walled metal-helical nanotube (M-HN): creation of efficient supramolecular catalysts for asymmetric reaction. J Am Chem Soc 138:15629–15635. https://doi.org/10.1021/jacs.6b08808

    Article  CAS  Google Scholar 

  146. Wu S, Li Y, Xie SY, Ma C, Lim J, Zhao J, Kim DS, Yang M, Yoon DK, Lee M, Kim SO, Huang Z (2017) Supramolecular nanotubules as a catalytic regulator for palladium cations: applications in selective catalysis. Angew Chem Int Ed 56:11511–11514. https://doi.org/10.1002/anie.201706373

    Article  CAS  Google Scholar 

  147. He Z, Zhong A, Zhang H, Xiong L, Xu Y, Wang T, Zhou M, Huang K (2016) Three-arm branched microporous organic nanotube networks. Macromol Rapid Commun 37:1566–1572. https://doi.org/10.1002/marc.201600327

    Article  CAS  Google Scholar 

  148. Xiong L, Zhang H, He Z, Wang T, Xu Y, Zhou M, Huang K (2018) Acid-base bifunctional amphiphilic organic nanotubes as a catalyst for one-pot cascade reactions in water. New J Chem 42:1368–1372. https://doi.org/10.1039/c7nj04209d

    Article  CAS  Google Scholar 

  149. Lee KS, Parquette JR (2015) A self-assembled nanotube for the direct aldol reaction in water. Chem Commun 51:15653–15656. https://doi.org/10.1039/c5cc06142c

    Article  CAS  Google Scholar 

  150. Wang T, Xu Y, He Z, Zhang H, Xiong L, Zhou M, Yu W, Shi B, Huang K (2017) Acid-base bifunctional microporous organic nanotube networks for cascade reactions. Macromol Chem Phys 218:1600431. https://doi.org/10.1002/macp.201600431

    Article  CAS  Google Scholar 

  151. Amano Y, Komatsu T (2015) Nanotube reactor with a lipase wall interior for enzymatic ring-opening oligomerization of lactone. Chem Lett 44:1646–1648. https://doi.org/10.1246/cl.150789

    Article  CAS  Google Scholar 

  152. Komatsu T, Terada H, Kobayashi N (2011) Protein nanotubes with an enzyme interior surface. Chem Eur J 17:1849–1854. https://doi.org/10.1002/chem.201001937

    Article  CAS  Google Scholar 

  153. Kobayakawa S, Nakai Y, Akiyama M, Komatsu T (2017) Self-propelled soft protein microtubes with a Pt nanoparticle interior surface. Chem Eur J 23:5044–5050. https://doi.org/10.1002/chem.201605055

    Article  CAS  Google Scholar 

  154. Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52:7000–7003. https://doi.org/10.1002/anie.201301643

    Article  CAS  Google Scholar 

  155. Chen J, Zhang B, Xia F, Xie Y, Jiang S, Su R, Lu Y, Wu W (2016) Transmembrane delivery of anticancer drugs through self-assembly of cyclic peptide nanotubes. Nanoscale 8:7127–7136. https://doi.org/10.1039/c5nr06804e

    Article  CAS  Google Scholar 

  156. Danial M, Tran CMN, Young PG, Perrier S, Jolliffe KA (2013) Janus cyclic peptide-polymer nanotubes. Nat Commun 4:2780. https://doi.org/10.1038/ncomms3780

    Article  CAS  Google Scholar 

  157. Gong B, Shao Z (2013) Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Acc Chem Res 46:2856–2866. https://doi.org/10.1021/ar400030e

    Article  CAS  Google Scholar 

  158. Komatsu T, Qu X, Ihara H, Fujihara M, Azuma H, Ikeda H (2011) Virus trap in human serum albumin nanotube. J Am Chem Soc 133:3246–3248. https://doi.org/10.1021/Ja1096122

    Article  CAS  Google Scholar 

  159. Yuge S, Akiyama M, Ishii M, Namkoong H, Yagi K, Nakai Y, Adachi R, Komatsu T (2017) Glycoprotein nanotube traps influenza virus. Chem Lett 46:95–97. https://doi.org/10.1246/cl.160805

    Article  CAS  Google Scholar 

  160. Kameta N, Asakawa M, Masuda M, Shimizu T (2011) Self-assembled organic nanotubes embedding hydrophobic molecules within solid bilayer membranes. Soft Matter 7:85–90. https://doi.org/10.1039/C0sm00375a

    Article  CAS  Google Scholar 

  161. Goto S, Amano Y, Akiyama M, Bottcher C, Komatsu T (2013) Gold nanoparticle inclusion into protein nanotube as a layered wall component. Langmuir 29:14293–14300. https://doi.org/10.1021/La403283x

    Article  CAS  Google Scholar 

  162. Qu X, Kobayashi N, Komatsu T (2010) Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein. ACS Nano 4:1732–1738. https://doi.org/10.1021/Nn901879d

    Article  CAS  Google Scholar 

  163. Kameta N, Tanaka A, Akiyama H, Minamikawa H, Masuda M, Shimizu T (2011) Photoresponsive soft nanotubes for controlled guest release. Chem Eur J 17:5251–5255. https://doi.org/10.1002/chem.201100179

    Article  CAS  Google Scholar 

  164. Ma X, Zhang Y, Zheng Y, Zhang Y, Tao X, Che Y, Zhao J (2015) Highly fluorescent one-handed nanotubes assembled from a chiral asymmetric perylene diimide. Chem Commun 51:4231–4233. https://doi.org/10.1039/c5cc00365b

    Article  CAS  Google Scholar 

  165. Gao M, Paul S, Schwieters CD, You ZQ, Shao H, Herbert JM, Parquette JR, Jaroniec CP (2015) A structural model for a self-assembled nanotube provides insight into its exciton dynamics. J Phys Chem C 119:13948–13956. https://doi.org/10.1021/acs.jpcc.5b03398

    Article  CAS  Google Scholar 

  166. Uji H, Kim H, Imai T, Mitani S, Sugiyama J, Kimura S (2016) Electronic properties of tetrathiafulvalene-modified cyclic-β-peptide nanotube. Biopolymers 106:275–282. https://doi.org/10.1002/bip.22850

    Article  CAS  Google Scholar 

  167. Tu S, Kim SH, Joseph J, Modarelli DA, Parquette JR (2013) Proton-coupled self-assembly of a porphyrin-naphthalenediimide dyad. ChemPhysChem 14:1609–1617. https://doi.org/10.1002/cphc.201300023

    Article  CAS  Google Scholar 

  168. Wang X, Duan P, Liu M (2014) Self-assembly of π-conjugated gelators into emissive chiral nanotubes: emission enhancement and chiral detection. Chem Asian J 9:770–778. https://doi.org/10.1002/asia.201301518

    Article  CAS  Google Scholar 

  169. de la Rica R, Mendoza E, Matsui H (2010) Bioinspired target-specific crystallization on peptide nanotubes for ultrasensitive pb ion detection. Small 6:1753–1756. https://doi.org/10.1002/smll.201000489

    Article  CAS  Google Scholar 

  170. Kameta N, Masuda M, Shimizu T (2015) Two-step naked-eye detection of lectin by hierarchical organization of soft nanotubes into liquid crystal and gel phases. Chem Commun 51:6816–6819. https://doi.org/10.1039/C5cc01464f

    Article  CAS  Google Scholar 

  171. de la Rica R, Mendoza E, Lechuga LM, Matsui H (2008) Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Angew Chem Int Ed 47:9752–9755. https://doi.org/10.1002/anie.200804299

    Article  CAS  Google Scholar 

  172. Ishihara Y, Kimura S (2012) Peptide nanotube composed of cyclic tetra-β-peptide having polydiacetylene. Biopolymers 98:155–160. https://doi.org/10.1002/Bip.22029

    Article  CAS  Google Scholar 

  173. Catrouillet S, Brendel JC, Larnaudie S, Barlow T, Jolliffe KA, Perrier S (2016) Tunable length of cyclic peptide-polymer conjugate self-assemblies in water. ACS Macro Lett 5:1119–1123. https://doi.org/10.1021/acsmacrolett.6b00586

    Article  CAS  Google Scholar 

  174. Koh ML, FitzGerald PA, Warr GG, Jolliffe KA, Perrier S (2016) Study of (cyclic peptide)–polymer conjugate assemblies by small-angle neutron scattering. Chem Eur J 22:18419–18428. https://doi.org/10.1002/chem.201603091

    Article  CAS  Google Scholar 

  175. Larnaudie SC, Brendel JC, Jolliffe KA, Perrier S (2016) Cyclic peptide-polymer conjugates: grafting-to vs grafting-from. J Polym Sci Part A: Polym Chem 54:1003–1011. https://doi.org/10.1002/pola.27937

    Article  CAS  Google Scholar 

  176. Montenegro J, Vazquez-Vazquez C, Kalinin A, Geckeler KE, Granja JR (2014) Coupling of carbon and peptide nanotubes. J Am Chem Soc 136:2484–2491. https://doi.org/10.1021/ja410901r

    Article  CAS  Google Scholar 

  177. Kim JU, Haberkorn N, Theato P, Zentel R (2011) Controlled fabrication of organic nanotubes via self-assembly of non-symmetric bis-acylurea. Colloid Polym Sci 289:1855–1862. https://doi.org/10.1007/s00396-011-2512-y

    Article  CAS  Google Scholar 

  178. Kameta N, Dong J, Yui H (2018) Thermoresponsive PEG-coated nanotubes as chiral selectors of amino acids and peptides. Small 14:1800030. https://doi.org/10.1002/smll.201800030

    Article  CAS  Google Scholar 

  179. Liu X, Chen L, Liu H, Yang G, Zhang P, Han D, Wang S, Jiang L (2013) Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. Npg Asia Mater 5, e63. https://doi.org/10.1038/am.2013.43

  180. Jin H, Ding YH, Wang M, Song Y, Liao Z, Newcomb CJ, Wu X, Tang XQ, Li Z, Lin Y, Yan F, Jian T, Mu P, Chen CL (2018) Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids. Nat Commun 9:270. https://doi.org/10.1038/s41467-017-02059-1

    Article  CAS  Google Scholar 

  181. Blunden BM, Chapman R, Danial M, Lu H, Jolliffe KA, Perrier S, Stenzel MH (2014) Drug conjugation to cyclic peptide-polymer self-assembling nanotubes. Chem Eur J 20:12745–12749. https://doi.org/10.1002/chem.201403130

    Article  CAS  Google Scholar 

  182. Ding W, Wada M, Kameta N, Minamikawa H, Shimizu T, Masuda M (2011) Functionalized organic nanotubes as tubular nonviral gene transfer vector. J Controlled Rel 156:70–75. https://doi.org/10.1016/j.jconrel.2011.07.007

    Article  CAS  Google Scholar 

  183. Hsieh WH, Chang SF, Chen HM, Chen JH, Liaw J (2012) Oral gene delivery with cyclo-(D-Trp-Tyr) peptide nanotubes. Mol Pharm 9:1231–1249. https://doi.org/10.1021/Mp200523n

    Article  CAS  Google Scholar 

  184. Lee YH, Chang SF, Liaw J (2015) Anti-apoptotic gene delivery with cyclo-(D-Trp-Tyr) peptide nanotube via eye drop following corneal epithelial debridement. Pharmaceutics 7:122–136. https://doi.org/10.3390/pharmaceutics7030122

    Article  CAS  Google Scholar 

  185. Li M, Ehlers M, Schlesiger S, Zellermann E, Knauer SK, Schmuck C (2016) Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection. Angew Chem Int Ed 55:598–601. https://doi.org/10.1002/anie.201508714

    Article  CAS  Google Scholar 

  186. Wang TQ, Xu Y, He ZD, Zhou MH, Huang K (2018) Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chin J Polym Sci 36:98–105. https://doi.org/10.1007/s10118-018-2007-0

    Article  CAS  Google Scholar 

  187. Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J (2010) Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small 6:825–831. https://doi.org/10.1002/smll.200902186

    Article  CAS  Google Scholar 

  188. Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E (2009) Self-Assembled Arrays of Peptide Nanotubes by Vapour Deposition. Nat Nanotechnol 4:849–854. https://doi.org/10.1038/nnano.2009.298

    Article  CAS  Google Scholar 

  189. Lee JS, Ryu J, Park CB (2009) Bio-inspired fabrication of superhydrophobic surfaces through peptide self-assembly. Soft Matter 5:2717–2720. https://doi.org/10.1039/b906783c

    Article  CAS  Google Scholar 

  190. Terech P, Jean B, Ne F (2006) Hexagonally ordered ammonium lithocholate self-assembled nanotubes with highly monodisperse sections. Adv Mater 18:1571–1574. https://doi.org/10.1002/adma.200502358

    Article  CAS  Google Scholar 

  191. Amorin M, Perez A, Barbera J, Ozores HL, Serrano JL, Granja JR, Sierra T (2014) Liquid crystal organization of self-assembling cyclic peptides. Chem Commun 50:688–690. https://doi.org/10.1039/c3cc47400c

    Article  CAS  Google Scholar 

  192. Kameta N, Shiroishi H (2018) PEG-nanotube liquid crystals as templates for construction of surfactant-free gold nanorods. Chem Commun 54:4665–4668. https://doi.org/10.1039/c8cc02013b

    Article  CAS  Google Scholar 

  193. Liu Y, Wang T, Li Z, Liu M (2013) Copper(II) ion selective and strong acid-tolerable hydrogels formed by an L-histidine ester terminated bolaamphiphile: from single molecular thick nanofibers to single-wall nanotubes. Chem Commun 49:4767–4769. https://doi.org/10.1039/c3cc41786g

    Article  CAS  Google Scholar 

  194. Lalitha K, Prasad YS, Maheswari CU, Sridharan V, John G, Nagarajan S (2015) Stimuli responsive hydrogels derived from a renewable resource: synthesis, self-assembly in water and application in drug delivery. J Mater Chem B 3:5560–5568. https://doi.org/10.1039/c5tb00864f

    Article  CAS  Google Scholar 

  195. Mukai M, Minamikawa H, Aoyagi M, Asakawa M, Shimizu T, Kogiso M (2013) A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups. J Colloid Interface Sci 395:154–160. https://doi.org/10.1016/j.jcis.2012.12.060

    Article  CAS  Google Scholar 

  196. Bernet A, Behr M, Schmidt HW (2011) Supramolecular nanotube-based fiber mats by self-assembly of a tailored amphiphilic low molecular weight hydrogelator. Soft Matter 7:1058–1065. https://doi.org/10.1039/C0sm00456a

    Article  CAS  Google Scholar 

  197. Kameta N, Ishikawa K, Masuda M, Asakawa M, Shimizu T (2012) Soft nanotubes acting as a light-harvesting antenna system. Chem Mater 24:209–214. https://doi.org/10.1021/Cm2030526

    Article  CAS  Google Scholar 

  198. Kameta N, Aoyagi M, Asakawa M (2017) Enhancement of the photocatalytic activity of Rhenium(I) complexes by encapsulation in light-harvesting soft nanotubes. Chem Commun 53:10116–10119. https://doi.org/10.1039/c7cc05337a

    Article  CAS  Google Scholar 

  199. Zhu X, Li Y, Duan P, Liu M (2010) Self-assembled ultralong chiral nanotubes and tuning of their chirality through the mixing of enantiomeric components. Chem Eur J 16:8034–8040. https://doi.org/10.1002/chem.201000595

    Article  CAS  Google Scholar 

  200. Zhang L, Liu C, Jin Q, Zhu X, Liu M (2013) Pyrene-functionalized organogel and spacer effect: from emissive nanofiber to nanotube and inversion of supramolecular chirality. Soft Matter 9:7966–7973. https://doi.org/10.1039/C3sm51204e

    Article  CAS  Google Scholar 

  201. Ni W, Liang F, Liu J, Qu X, Zhang C, Li J, Wang Q, Yang Z (2011) Polymer nanotubes toward gelating organic chemicals. Chem Commun 47:4727–4729. https://doi.org/10.1039/c1cc10900f

    Article  CAS  Google Scholar 

  202. Gan Z, Wu X, Zhu X, Shen J (2013) Light-induced ferroelectricity in bioinspired self-assembled diphenylalanine nanotubes/microtubes. Angew Chem Int Ed 52:2055–2059. https://doi.org/10.1002/anie.201207992

    Article  CAS  Google Scholar 

  203. Handelman A, Beker P, Mishina E, Semin S, Amdursky N, Rosenman G (2012) Ferroelectric properties and phase transition in dipeptide nanotubes. Ferroelectrics 430:84–91. https://doi.org/10.1080/00150193.2012.677721

    Article  CAS  Google Scholar 

  204. Zelenovskiy PS, Koryukova TA, Yuzhakov VV, Vasilev SG, Nuraeva AS, Gunina EV, Chezganov DS, Kholkin AL, Shur VY (2018) Piezoelectric properties and young’s moduli of diphenylalanine microtubes-oxide nanoparticles composites. Ferroelectrics 525:146–155. https://doi.org/10.1080/00150193.2018.1432826

    Article  CAS  Google Scholar 

  205. Bosne ED, Heredia A, Kopyl S, Karpinsky DV, Pinto AG, Kholkin AL (2013) Piezoelectric resonators based on self-assembled diphenylalanine microtubes. Appl Phys Lett 102:073504. https://doi.org/10.1063/1.4793417

  206. Handelman A, Beker P, Amdursky N, Rosenman G (2012) Physics and engineering of peptide supramolecular nanostructures. PCCP 14:6391–6408. https://doi.org/10.1039/c2cp40157f

    Article  CAS  Google Scholar 

  207. Rosenman G, Beker P, Koren I, Yevnin M, Bank-Srour B, Mishina E, Semin S (2011) Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. J Pept Sci 17:75–87. https://doi.org/10.1002/psc.1326

    Article  CAS  Google Scholar 

  208. Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G (2010) Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4:610–614. https://doi.org/10.1021/nn901327v

    Article  CAS  Google Scholar 

  209. Handelman A, Apter B, Turko N, Rosenman G (2016) Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes. Acta Biomater 30:72–77. https://doi.org/10.1016/j.actbio.2015.11.004

    Article  CAS  Google Scholar 

  210. Handelman A, Lavrov S, Kudryavtsev A, Khatchatouriants A, Rosenberg Y, Mishina E, Rosenman G (2013) Nonlinear optical bioinspired peptide nanostructures. Adv Opt Mater 1:875–884. https://doi.org/10.1002/adom.201300282

    Article  Google Scholar 

  211. Yan X, Su Y, Li J, Fruh J, Mohwald H (2011) Uniaxially oriented peptide crystals for active optical waveguiding. Angew Chem Int Ed 50:11186–11191. https://doi.org/10.1002/anie.201103941

    Article  CAS  Google Scholar 

  212. Xu X, Chen S, Chen Y, Sun H, Song L, He W, Wang X (2016) Polyoxometalate cluster-incorporated metal-organic framework hierarchical nanotubes. Small 12:2982–2990. https://doi.org/10.1002/smll.201503695

    Article  CAS  Google Scholar 

  213. Ryu J, Kim SW, Kang K, Park CB (2010) Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv Mater 22:5537–5541. https://doi.org/10.1002/adma.201000669

    Article  CAS  Google Scholar 

  214. Saeki A, Yamamoto Y, Koizumi Y, Fukushima T, Aida T, Seki S (2011) Photoconductivity of self-assembled hexabenzocoronene nanotube: insight into the charge carrier mobilities on local and long-range scales. J Phys Chem Lett 2:2549–2554. https://doi.org/10.1021/Jz201223e

    Article  CAS  Google Scholar 

  215. Yamamoto Y (2011) Electroactive nanotubes from π-conjugated discotic molecules. Bull Chem Soc Jpn 84:17–25. https://doi.org/10.1246/bcsj.20100272

    Article  CAS  Google Scholar 

  216. Amdursky N, Gazit E, Rosenman G (2010) Quantum confinement in self-assembled bioinspired peptide hydrogels. Adv Mater 22:2311–2315. https://doi.org/10.1002/adma.200904034

    Article  CAS  Google Scholar 

  217. Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G (2009) Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett 9:3111–3115. https://doi.org/10.1021/nl9008265

    Article  CAS  Google Scholar 

  218. Rubin DJ, Amini S, Zhou F, Su HB, Miserez A, Joshi NS (2015) Structural, nanomechanical, and computational characterization of D, L-cyclic peptide assemblies. ACS Nano 9:3360–3368. https://doi.org/10.1021/acsnano.5b00672

    Article  CAS  Google Scholar 

  219. Rubin DJ, Nia HT, Desire T, Nguyen PQ, Gevelber M, Ortiz C, Joshi NS (2013) Mechanical reinforcement of polymeric fibers through peptide nanotube incorporation. Biomacromol 14:3370–3375. https://doi.org/10.1021/bm4008293

    Article  CAS  Google Scholar 

  220. Even N, Adler-Abramovich L, Buzhansky L, Dodiuk H, Gazit E (2011) Improvement of the mechanical properties of epoxy by peptide nanotube fillers. Small 7:1007–1011. https://doi.org/10.1002/smll.201001940

    Article  CAS  Google Scholar 

  221. Goldshtein K, Golodnitsky D, Peled E, Adler-Abramovich L, Gazit E, Khatun S, Stallworth P, Greenbaum S (2012) Effect of peptide nanotube filler on structural and ion-transport properties of solid polymer electrolytes. Solid State Ionics 220:39–46. https://doi.org/10.1016/j.ssi.2012.05.028

    Article  CAS  Google Scholar 

  222. Azuri I, Adler-Abramovich L, Gazit E, Hod O, Kronik L (2014) Why are diphenylalanine-based peptide nanostructures so rigid? insights from first principles calculations. J Am Chem Soc 136:963–969. https://doi.org/10.1021/ja408713x

    Article  CAS  Google Scholar 

  223. Adler-Abramovich L, Kol N, Yanai I, Barlam D, Shneck RZ, Gazit E, Rousso I (2010) Self-assembled organic nanostructures with metallic-like stiffness. Angew Chem Int Ed 49:9939–9942. https://doi.org/10.1002/anie.201002037

    Article  CAS  Google Scholar 

  224. Niu L, Chen X, Allen S, Tendler SJB (2007) Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir 23:7443–7446. https://doi.org/10.1021/la7010106

    Article  CAS  Google Scholar 

  225. Frusawa H, Manabe T, Kagiyama E, Hirano K, Kameta N, Masuda M, Shimizu T (2013) Electric moulding of dispersed lipid nanotubes into a nanofluidic device. Sci Rep 3:2165. https://doi.org/10.1038/Srep02165

    Article  Google Scholar 

  226. Hirano K, Aoyagi M, Ishido T, Ooie T, Frusawa H, Asakawa M, Shimizu T, Ishikawa M (2009) Measuring the length distribution of self-assembled lipid nanotubes by orientation control with a high-frequency alternating current electric field in aqueous solutions. Anal Chem 81:1459–1464. https://doi.org/10.1021/Ac8022795

    Article  CAS  Google Scholar 

  227. Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1:195–200. https://doi.org/10.1038/nnano.2006.139

    Article  CAS  Google Scholar 

  228. Mahajan N, Zhao Y, Du T, Fang J (2006) Nanoscale ripples in self-assembled lipid tubules. Langmuir 22:1973–1975. https://doi.org/10.1021/la051751n

    Article  CAS  Google Scholar 

  229. Fang J (2007) Ordered arrays of self-assembled lipid tubules: fabrication and applications. J Mater Chem 17:3479–3484. https://doi.org/10.1039/B705350a

    Article  CAS  Google Scholar 

  230. Zhao Y, Fang J (2008) Direct printing of self-assembled lipid tubules on substrates. Langmuir 24:5113–5117. https://doi.org/10.1021/la703634t

    Article  CAS  Google Scholar 

  231. Safaryan S, Slabov V, Kopyl S, Romanyuk K, Bdikin I, Vasilev S, Zelenovskiy P, Shur VY, Uslamin EA, Pidko EA, Vinogradov AV, Kholkin AL (2018) Diphenylalanine-based microribbons for piezoelectric applications via inkjet printing. ACS Appl Mater Interfaces 10:10543–10551. https://doi.org/10.1021/acsami.7b19668

    Article  CAS  Google Scholar 

  232. Adler-Abramovich L, Gazit E (2008) Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. J Pept Sci 14:217–223. https://doi.org/10.1002/psc.963

    Article  CAS  Google Scholar 

  233. Garcia-Fandino R, Amorin M, Castedo L, Granja JR (2012) Transmembrane ion transport by self-assembling α,γ-peptide nanotubes. Chem Sci 3:3280–3285. https://doi.org/10.1039/c2sc21068a

    Article  CAS  Google Scholar 

  234. Ruiz L, Benjamin A, Sullivan M, Keten S (2015) Regulating ion transport in peptide nanotubes by tailoring the nanotube lumen chemistry. J Phys Chem Lett 6:1514–1520. https://doi.org/10.1021/acs.jpclett.5b00252

    Article  CAS  Google Scholar 

  235. Montenegro J, Ghadiri MR, Granja JR (2013) Ion Channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 46:2955–2965. https://doi.org/10.1021/ar400061d

    Article  CAS  Google Scholar 

  236. Rodriguez-Vazquez N, Amorin M, Granja JR (2017) Recent advances in controlling the internal and external properties of self-assembling cyclic peptide nanotubes and dimers. Org Biomol Chem 15:4490–4505. https://doi.org/10.1039/c7ob00351j

    Article  CAS  Google Scholar 

  237. Karlsson A, Karlsson R, Karlsson M, Cans A-S, Stroemberg A, Ryttsen F, Orwar O (2001) Networks of nanotubes and containers. Nature 409:150–152. https://doi.org/10.1038/35051656

    Article  CAS  Google Scholar 

  238. Hurtig J, Orwar O (2008) Injection and transport of bacteria in nanotube-vesicle networks. Soft Matter 4:1515–1520. https://doi.org/10.1039/b800333e

    Article  CAS  Google Scholar 

  239. Lizana L, Bauer B, Orwar O (2008) Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc Natl Acad Sci USA 105:4099–4104. https://doi.org/10.1073/pnas.0709932105

    Article  Google Scholar 

  240. Sekine Y, Abe K, Shimizu A, Sasaki Y, Sawada S, Akiyoshi K (2012) Shear flow-induced nanotubulation of surface-immobilized liposomes. Rsc Adv 2:2682–2684. https://doi.org/10.1039/C2ra00629d

    Article  CAS  Google Scholar 

  241. Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic D, L-α-peptide architecture. Nature 412:452–455. https://doi.org/10.1038/35086601

    Article  CAS  Google Scholar 

  242. Motiei L, Rahimipour S, Thayer DA, Wong CH, Ghadiri MR (2009) Antibacterial cyclic D,L-α-Glycopeptides. Chem Commun 3693–3695. https://doi.org/10.1039/b902455g

  243. Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martineza F, Castillo-Leon J (2013) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138:1026–1031. https://doi.org/10.1039/c2an36121c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimi Shimizu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimizu, T. (2021). General Remarks of Soft-Matter Nanotubes. In: Smart Soft-Matter Nanotubes. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2685-2_1

Download citation

Publish with us

Policies and ethics