Skip to main content

Nanosystems for Cancer Therapy

  • Chapter
  • First Online:
Bio-Nano Interface

Abstract

The chapter focuses on the various nanosystems and their applications in cancer therapy. The nanosystems comprise nanoscaled biomaterials that carry the drug molecules, proteins and genes into the tumor environment to achieve therapeutic efficacy. The current know-how of the cancer physiology and the cancer milieu facilitates designing nanosystems for cancer therapy. In terms of size, nanosystems are a thousandth part of an average human cell. Nanosystems having a size of less than 300 nm have enhanced permeability and retention in cancer cells than healthy cells.

In comparison, nanosystems less than 50 nm in size easily enter most of the healthy cells. Hence, the size of nanosystems is extremely critical for their enhanced efficacy. By exploiting their small size, nanosystems can interact with physiological molecules both outside and inside the cancer cells. Upon functionalization of nanoparticles with antibodies, drug molecules, and genes, we can have access to all the cells of the body. The system behaves like inject and forget nanodevice which can selectively target cancer cells without affecting normal cells. The nanosystems are building the roadmap for future technologies where these can be potentially used to detect cancer cells and deliver treatment at the targeted site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadi Nasab N, Hassani Kumleh H, Beygzadeh M, Teimourian S, Kazemzad M (2016) Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artif Cells Nanomed Biotechnol 46(1):75–81

    Article  CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  • Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58(3):168–172

    Article  PubMed  CAS  Google Scholar 

  • Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr C-M, Ehrhardt C (2006) In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci 29(5):367–374

    Article  CAS  PubMed  Google Scholar 

  • Ayer M, Klok H-A (2017) Cell-mediated delivery of synthetic nano-and microparticles. J Control Release 259:92–104

    Article  CAS  PubMed  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  CAS  PubMed  Google Scholar 

  • Baker JR Jr (2009) Dendrimer-based nanoparticles for cancer therapy. ASH Educ Program Book 2009(1):708–719

    Google Scholar 

  • Bloise N, Massironi A, Della Pina C, Alongi J, Siciliani S, Manfredi A et al (2020) Extra-small gold nanospheres decorated with a thiol functionalized biodegradable and biocompatible linear polyamidoamine as nanovectors of anticancer molecules. Front Bioeng Biotechnol 8:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordelon H, Biris AS, Sabliov CM, Todd MW (2010) Characterization of plasmid DNA location within chitosan/PLGA/pDNA nanoparticle complexes designed for gene delivery. J Nanomater 2011:952060

    Google Scholar 

  • Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol 13(8):790–801

    Article  PubMed  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  CAS  PubMed  Google Scholar 

  • Corem-Salkmon E, Ram Z, Daniels D, Perlstein B, Last D, Salomon S et al (2011) Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomed 6:1595

    CAS  Google Scholar 

  • Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  PubMed  Google Scholar 

  • Daniels TR, Bernabeu E, Rodriguez JA, Patel S, Kozman M, Chiappetta DA et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820(3):291–317

    Article  CAS  PubMed  Google Scholar 

  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA PEG nanoparticles. Proc Natl Acad Sci 105(45):17356–17361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Wu MS, Xue H-Y, Wong H-L (2017) Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomed 12:5879

    Article  CAS  Google Scholar 

  • Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13(4):283–287

    Article  CAS  PubMed  Google Scholar 

  • Dowaidar M, Nasser Abdelhamid H, Hallbrink M, Langel U, Zou X (2018) Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. J Biomater Appl 33(3):392–401

    Article  CAS  PubMed  Google Scholar 

  • Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56(8):1067–1084

    Article  CAS  PubMed  Google Scholar 

  • Elshama SS, Abdallah ME, Abdel-Karim RI (2018) Zinc oxide nanoparticles: therapeutic benefits and toxicological hazards. Open Nanomed J 5(1):16–22

    Article  Google Scholar 

  • El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH (2017) Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. Nanomedicine 12(4):387–402

    Article  CAS  PubMed  Google Scholar 

  • Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15(9):1332–1339

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  CAS  PubMed  Google Scholar 

  • Ganta S, Devalapally H, Amiji M (2010) Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. J Pharm Sci 99(11):4630–4641

    Article  CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7(12):3818–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Goncalves AS, Macedo AS, Souto EB (2012) Therapeutic nanosystems for oncology nanomedicine. Clin Transl Oncol 14(12):883–890

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Gao X, Su L, Xia H, Gu G, Pang Z et al (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32(31):8010–8020

    Article  CAS  PubMed  Google Scholar 

  • Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885

    Article  CAS  PubMed  Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89(2):151–165

    Article  CAS  PubMed  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94(10):2135–2146

    Article  CAS  PubMed  Google Scholar 

  • Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):128ra39

    Article  PubMed  Google Scholar 

  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51(1–3):81–96

    Article  CAS  PubMed  Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Gihm SH, Park CR, Lee KY, Kim TW, Kwon IC et al (2001) Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier. Bioconjug Chem 12(6):932–938

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329(1–2):94–102

    Article  CAS  PubMed  Google Scholar 

  • Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM (2006) Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials 27(4):660–669

    Article  CAS  PubMed  Google Scholar 

  • Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM et al (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8(14):1108–1121

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Dutz S, Hafeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166(1–2):8–23

    Article  CAS  Google Scholar 

  • Lee H, Sung D, Veerapandian M, Yun K, Seo SW (2011) PEGylated polyethyleneimine grafted silica nanoparticles: enhanced cellular uptake and efficient siRNA delivery. Anal Bioanal Chem 400(2):535–545

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang YT, Yu M, Guo J, Chaudhary D, Wang CC (2013) Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles. Biomaterials 34(32):7913–7922

    Article  CAS  PubMed  Google Scholar 

  • Li F, Liu WG, Yao KD (2002) Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour. Biomaterials 23(2):343–347

    Article  PubMed  Google Scholar 

  • Li L, Fang CJ, Ryan JC, Niemi EC, Lebron JA, Bjorkman PJ et al (2010) Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci 107(8):3505–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Liu C, Zhao X, Zu Y, Wang Y, Zhang B et al (2011) Preparation, characterization and targeting of micronized 10-hydroxycamptothecin-loaded folate-conjugated human serum albumin nanoparticles to cancer cells. Int J Nanomed 6:397

    CAS  Google Scholar 

  • Liu Y, Franzen S (2008) Factors determining the efficacy of nuclear delivery of antisense oligonucleotides by gold nanoparticles. Bioconjug Chem 19(5):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for Cancer therapy in animals. Small 6(16):1794–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahanta S, Paul S (2015) Stable self-assembly of bovine α-lactalbumin exhibits target-specific antiproliferative activity in multiple cancer cells. ACS Appl Mater Interfaces 7(51):28177–28187

    Article  CAS  PubMed  Google Scholar 

  • Mahanta S, Paul S, Srivastava A, Pastor A, Kundu B, Chaudhuri TK (2015) Stable self-assembled nanostructured hen egg white lysozyme exhibits strong anti-proliferative activity against breast cancer cells. Colloids Surf B: Biointerfaces 130:237–245

    Article  CAS  PubMed  Google Scholar 

  • Mahanta S, Prathap S, Ban DK, Paul S (2017) Protein functionalization of ZnO nanostructure exhibits selective and enhanced toxicity to breast cancer cells through oxidative stress-based cell death mechanism. J Photochem Photobiol B Biol 173:376–388

    Article  CAS  Google Scholar 

  • Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolani R, Pompa PP (2012) SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale 4(2):486–495

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Carmona M, Gun'ko Y, Vallet-Regi M (2018) ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials 8(4):268

    Article  PubMed Central  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  • McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3(2):169–180

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  PubMed  Google Scholar 

  • Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA et al (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11(9):3530–3534

    Article  CAS  PubMed  Google Scholar 

  • Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18(27):4206–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183

    Article  CAS  PubMed  Google Scholar 

  • Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ (2002) Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood J Am Soc Hematol 100(2):594–602

    CAS  Google Scholar 

  • Papasani MR, Wang G, Hill RA (2012) Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine 8(6):804–814

    Article  CAS  PubMed  Google Scholar 

  • Parakh S, Parslow AC, Gan HK, Scott AM (2015) Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv 13(3):401–419

    Article  PubMed  CAS  Google Scholar 

  • Park IK, Jiang HL, Cook SE, Cho MH, Kim SI, Jeong HJ et al (2004) Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier: in vitro transfection. Arch Pharm Res 27(12):1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR (2004) Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 15(6):1174–1181

    Article  CAS  PubMed  Google Scholar 

  • Prabha S, Labhasetwar V (2004) Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharm 1(3):211–219

    Article  CAS  PubMed  Google Scholar 

  • Prabha S, Zhou WZ, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244(1–2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Romoren K, Thu BJ, Evensen O (2002) Immersion delivery of plasmid DNA. II. A study of the potentials of a chitosan based delivery system in rainbow trout (Oncorhynchus mykiss) fry. J Control Release 85(1–3):215–225

    Article  CAS  PubMed  Google Scholar 

  • Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C et al (2009) Targeting of porous hybrid silica nanoparticles to Cancer cells. ACS Nano 3(1):197–206

    Article  CAS  PubMed  Google Scholar 

  • Saeed RM, Dmour I, Taha MO (2020) Stable chitosan-based nanoparticles using Polyphosphoric acid or Hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front Bioeng Biotechnol 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X et al (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33(10):3025–3035

    Article  CAS  PubMed  Google Scholar 

  • Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B (2016) Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif Cells Nanomed Biotechnol 44(2):672–679

    Article  CAS  PubMed  Google Scholar 

  • Shen JM, Gao FY, Yin T, Zhang HX, Ma M, Yang YJ et al (2013) cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol Res 70(1):102–115

    Article  CAS  PubMed  Google Scholar 

  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  CAS  PubMed  Google Scholar 

  • Szymanski P, Markowicz M, Mikiciuk-Olasik E (2011) Nanotechnology in pharmaceutical and biomedical applications: dendrimers. Nano 6(06):509–539

    Article  CAS  Google Scholar 

  • Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anti-Cancer Drugs 22(10):949–962

    Article  CAS  PubMed  Google Scholar 

  • Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23(1):153–159

    Article  CAS  PubMed  Google Scholar 

  • Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ et al (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4(10):1352–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454

    Article  CAS  PubMed  Google Scholar 

  • Truffi M, Colombo M, Sorrentino L, Pandolfi L, Mazzucchelli S, Pappalardo F et al (2018) Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep 8(1):6563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW et al (2006) Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol Cancer Ther 5(4):1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR et al (2008) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):16014

    Article  CAS  Google Scholar 

  • Wu K, Su D, Liu J, Saha R, Wang JP (2019) Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 30(50):502003

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53(19):6811–6824

    Article  CAS  PubMed  Google Scholar 

  • Yu BO, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Tan TMC, Lim L-Y (2007) Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab Dispos 35(1):110–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahanta, S.K., Arakha, M. (2022). Nanosystems for Cancer Therapy. In: Arakha, M., Pradhan, A.K., Jha, S. (eds) Bio-Nano Interface. Springer, Singapore. https://doi.org/10.1007/978-981-16-2516-9_8

Download citation

Publish with us

Policies and ethics