Skip to main content

Nanotechnology Mediated Detection and Control of Phytopathogens

  • Chapter
  • First Online:
Bio-Nano Interface

Abstract

In current environmental scenario, about 20–40% of crops are destroyed by pests and pathogens annually. Hence to control the plant pathogens, toxic pesticides are generally used which are harmful to both environment and human beings. In this context, nanotechnology provides harmless effect to pesticides as it reduces toxicity, increases solubility of less water-soluble pesticides and increases shelf-life. It also provides good impact on environment and soil. Nanoparticles are small particles which have size in between 1 and 100 nm. This chapter intends to discuss how nanoparticles can be used for the control of plant diseases either nanoparticle alone or acting as protestants or nanocarriers for insecticides, pesticides and fungicides. Nanoparticles which are synthesized by different methods can be used for agricultural applications. Nowadays although nanotechnology is progressing quickly, however its application in agricultural fields is insignificant to control pests and pathogens practically. Hence, agricultural applications can be developed by understanding the fundamental things of research and production of commercial nanoproducts to control plant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M, Choi HY, Cho S-G (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120

    Article  PubMed Central  CAS  Google Scholar 

  • Abou El-Nour KM, Aa E, Al-Warthan A, Ammar RA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140

    Article  CAS  Google Scholar 

  • Adisa IO, Pullagurala VLR, Peralta-Videa JR, Dimkpa CO, Elmer WH, Gardea-Torresdey JL, White JC (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano 6(7):2002–2030

    Article  CAS  Google Scholar 

  • Agrahari RK, Singh P, Koyama H, Panda SK (2020) Plant-microbe interactions for sustainable agriculture in the postgenomic era. Curr Genom 21(3):168–178

    Article  CAS  Google Scholar 

  • Barik T, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Singh S, Satnalika N, Khandelwal A, Jeon S-H (2009) Nanotechnology, big things from a tiny world: a review. Int J U-E-Serv Sci Technol 2(3):29–38

    Google Scholar 

  • Bholay AD, Nalawade PM, Borkhataria BV (2013) Fungicidal potential of biosynthesized silver nanoparticles against phyto-pathogens and potentiation of fluconazole. World Res J Pharm Res 1(1):12–15

    Google Scholar 

  • Bramlett M, Plaetinck G, Maienfisch PJE (2019) RNA-based biocontrols—a new paradigm in crop protection. Elsevier 6:522–527

    Google Scholar 

  • Cameron D, Frazer E, Harvey P, Rampton M, Richardson K (2018) Researching language: issues of power and method, vol 1. Routledge, London, p 160

    Book  Google Scholar 

  • Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11

    Google Scholar 

  • Chidambaram R (2016) Application of rice husk nanosorbents containing 2, 4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J Taiwan Inst Chem Eng 63:318–326

    Article  CAS  Google Scholar 

  • Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo YJ (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10(6):2093–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromwell W, Yang J, Starr J, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira JL, Campos EVR, Goncalves da Silva CM, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63(2):422–432

    Article  PubMed  CAS  Google Scholar 

  • De Wit PJ (1995) Fungal avirulence genes and plant resistance genes: unraveling the molecular basis of gene-for-gene interactions. In: Advances in botanical research, vol 21. Elsevier, Amsterdam, pp 147–185

    Google Scholar 

  • De Wolf ED, Isard SA (2007) Disease cycle approach to plant disease prediction. Annu Rev Phytopathol 45:203–220

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924

    Article  CAS  PubMed  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23(3):345–357

    Article  CAS  Google Scholar 

  • Drexled KE (1986) Engines of creation: the coming era of nanotechnology. Anchor Books, New York

    Google Scholar 

  • Duffy B (2007) Zinc and plant disease. In: Mineral nutrition and plant disease. American Phytopathological Society, Saint Paul, MN, pp 155–175

    Google Scholar 

  • Ealias AM, Saravanakumar M (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering, p 032019

    Google Scholar 

  • Elmer W, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, Gardea-Torresdey J, White JC (2018) Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis 102(7):1394–1401

    Article  CAS  PubMed  Google Scholar 

  • Elmer W, White J (2016) Nanoparticles of CuO improves growth of eggplant and tomato in disease infested soils. Environ Sci Nano 3:1072–1079

    Article  CAS  Google Scholar 

  • Evans I, Solberg E, Huber D (2007) Copper and plant disease. In: Mineral nutrition and plant disease. American Phytopathological Society, Saint Paul, MN, pp 177–188

    Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386

    Article  CAS  PubMed  Google Scholar 

  • Gardeniers J, Van den Berg A (2004) Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem 378(7):1700–1703

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  PubMed  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752

    Article  CAS  Google Scholar 

  • Graham J, Johnson E, Myers M, Young M, Rajasekaran P, Das S, Santra S (2016) Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis 100(12):2442–2447

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124(1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grillo R, Rosa A, Fraceto L (2014) Poly (ε-caprolactone) nanocapsules carrying the herbicide atrazine: effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. Int J Environ Sci Technol 11(6):1691–1700

    Article  CAS  Google Scholar 

  • Hatfaludi T, Liska M, Zellinger D, Ousman JP, Szostak M, Ambrus Á, Jalava K, Lubitz W (2004) Bacterial ghost technology for pesticide delivery. J Agric Food Chem 52(18):5627–5634

    Article  CAS  PubMed  Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Elsevier, Amsterdam, pp 193–225

    Chapter  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Janatova A, Bernardos A, Smid J, Frankova A, Lhotka M, Kourimská L, Pulkrabek J, Kloucek P (2015) Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind Crop Prod 67:216–220

    Article  CAS  Google Scholar 

  • Jung J-H, Kim S-W, Min J-S, Kim Y-J, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Mohidin FA, Khan U, Ahamad F (2016) Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biol Control 101:159–168

    Article  Google Scholar 

  • Khan MR, Rizvi TF (2017) Application of nanofertilizer and nanopesticides for improvements in crop production and protection. In: Nanoscience and plant–soil systems. Springer, Cham, pp 405–427

    Chapter  Google Scholar 

  • Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP (2016) Budding trends in integrated pest management using advanced micro-and nano-materials: Challenges and perspectives. J Environ Manag 184:157–169

    Article  CAS  Google Scholar 

  • Kim HS, Kang HS, Chu GJ, Byun HS (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. In: Solid state phenomena. Trans Tech Publication, Zurich, pp 15–18

    Google Scholar 

  • Kumar S, Kumar D, Dilbaghi N (2017) Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res 24(1):926–937

    Article  CAS  Google Scholar 

  • Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7(1):E10

    Article  Google Scholar 

  • Lamsa K, Kim S-W, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Huang Q, Wu Y (2011) A novel chitosan-poly (lactide) copolymer and its submicron particles as imidacloprid carriers. Pest Manag Sci 67(7):831–836

    Article  CAS  PubMed  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Lu ML, Zhang QP, Tian YQ, Zhang ZX, Xu HH (2013) Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: synthesis, characterization, and in vitro evaluation. J Polym Sci A Polym Chem 51(18):3932–3940

    Article  CAS  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17(7):996

    Article  PubMed Central  CAS  Google Scholar 

  • Mallaiah B (2015) Integrated approaches for the management of crossandra crossandra infundibuliformis l Nees wilt caused by fusarium incarnatum desm Sacc. Coimbatore

    Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash P, Fraceto LF, De Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuillan J (2010) Bacterial-nanoparticle interactions. Univ Exeter 7(1):3

    Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4(4):385–392

    Article  CAS  Google Scholar 

  • Mondal KK, Rajendran T, Phaneendra C, Mani C, Sharma J, Shukla R, Verma G, Kumar R, Singh D, Kumar A (2012) The reliable and rapid polymerase chain reaction (PCR) diagnosis for Xanthomonas axonopodis pv. Punicae in pomegranate. Afr J Microbiol Res 6(30):5950–5956

    CAS  Google Scholar 

  • Morel J-B, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Diff 4(8):671–683

    Article  CAS  Google Scholar 

  • Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78(10):M1589–M1594

    Article  CAS  PubMed  Google Scholar 

  • Mueller CF, Laude K, McNally JS, Harrison DG (2005) Redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25(2):274–278

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TNQ, Hua QC, Nguyen TT (2014) Enhancing insecticide activity of anacardic acid by intercalating it into MgAl layered double hydroxides nanoparticles. J Vietnam Environ 6(3):208–211

    Article  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Paret ML, Palmateer AJ, Knox GW (2013) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. Hort Sci 48(2):189–192

    CAS  Google Scholar 

  • Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4):1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Pepperman AB, Kuan J-CW, McCombs C (1991) Alginate controlled release formulations of metribuzin. J Control Release 17(1):105–111

    Article  CAS  Google Scholar 

  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad T, Sajanlal P, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173(1-2):51–57

    Article  CAS  Google Scholar 

  • Radzig M, Nadtochenko V, Koksharova O, Kiwi J, Lipasova V, Khmel I (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B: Biointerfaces 102:300–306

    Article  CAS  PubMed  Google Scholar 

  • Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45(7):1272–1291

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Richards R (1981) Antimicrobial action of silver nitrate. Microbios 31(124):83–91

    CAS  PubMed  Google Scholar 

  • Sherald J, Lei J (1991) Evaluation of a rapid ELISA test kit for detection of Xylella fastidiosa in landscape trees. Plant Dis 75(2):200–203

    Article  Google Scholar 

  • Siddiqui Z, Khan A, Khan M, Abd-Allah E (2018) Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.). Acta Phytopathol Entomol Hungar 53(2):195–211

    Article  CAS  Google Scholar 

  • Sotthivirat S, Haslam J, Stella V (2007) Evaluation of various properties of alternative salt forms of sulfobutylether-β-cyclodextrin,(SBE) 7M-β-CD. Int J Pharm 330(1-2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  PubMed  Google Scholar 

  • Stakman E (1915) Relation between Puccinia graminis and plants highly resistant to its attack. J Agric Res 4:193–200

    Google Scholar 

  • Stephenson GR (2003) Pesticide use and world food production: risks and benefits, vol 853. ACS Publications, Washington, DC, pp 261–270

    Google Scholar 

  • Strayer-Scherer A, Liao Y, Young M, Ritchie L, Vallad G, Santra S, Freeman J, Clark D, Jones J, Paret M (2018) Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology 108(2):196–205

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar J, Adhikari T (2015) Nanotechnology in soil science. In: Soil science: an introduction. ICAR, New Delhi, pp 775–807

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed: Nanotechnol Biol Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Viswanathan S, Wu L-c, Huang M-R, Ho J-aA (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly (3, 4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 78(4):1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322(3):681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 8(12):285

    Article  CAS  Google Scholar 

  • Xu L, Cao L-D, Li F-M, Wang X-J, Huang Q-L (2014) Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J Dis Sci Technol 35(4):544–550

    Article  CAS  Google Scholar 

  • Yadeta K, Thomma B (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97

    PubMed  PubMed Central  Google Scholar 

  • Yan J, Huang K, Wang Y, Liu S (2005) Study on anti-pollution nano-preparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Arakha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, B., Rath, S.K., Mahanta, S.K., Arakha, M. (2022). Nanotechnology Mediated Detection and Control of Phytopathogens. In: Arakha, M., Pradhan, A.K., Jha, S. (eds) Bio-Nano Interface. Springer, Singapore. https://doi.org/10.1007/978-981-16-2516-9_7

Download citation

Publish with us

Policies and ethics