Skip to main content

Global Status of Genetically Modified Crops

  • Chapter
  • First Online:
Agricultural Biotechnology: Latest Research and Trends

Abstract

The biggest problem the world is facing today is hunger, malnutrition, and the rising population. Adopting advanced breeding innovation technologies for enhanced agricultural production is urgently needed to meet the rising global demand for food and nutritional security. Recent advancements in GM technology, genome editing seem promising to accelerate crop improvement by enabling effective targeted modification in most crops/plants. Biosafety regulations for genome-modified plants are essential and often variable in various countries. In India, the GM Crops Release Regulation is one of the most regulated GM technologies in the world. The USA, Brazil, Argentina, Canada, and India planted about 91% of the global GM crop area of 190.4 million hectares. Soybean, maize, cotton, and canola are extensively grown and are of the utmost importance among all GM food crops. On six continents, approximately 32 plants were released for commercial cultivation. In five countries all over the world, 1.95 billion people have benefited from GM food biotechnology. This book chapter highlighted the global and Indian status of research and commercialization of GM crops, regulation of GM, and genome-edited technologies in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah N, Prakash C, McHughen A (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6:183–205

    Article  PubMed  Google Scholar 

  • Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57(2):271–283

    Article  CAS  PubMed  Google Scholar 

  • Barrows G, Sexton S, Zilberman D (2014) The impact of agricultural biotechnology on supply and land-use. Environ Dev Econ 19(6):676–703

    Article  Google Scholar 

  • Bhattacharya S, Sengupta S, Karmakar A, Sarkar SN, Gangopadhyay G, Datta K, Datta SK (2019) Genetically engineered rice with appA gene enhanced phosphorus and minerals. J Plant Biochem Biotechnol 28(4):470–482

    Article  CAS  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Bruening G, Lyons J (2000) The case of the FLAVR SAVR tomato. California Agric 54(4):6–7

    Article  Google Scholar 

  • ÄŒermák T, Baltes NJ, ÄŒegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16(1):1–15

    Article  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary B, Gaur K (2015) Biotech cotton in India, 2002 to 2014. In: ISAAA series of biotech crop profiles. ISAAA, Ithaca, pp 1–34

    Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, Al-Babili S, Beyer P (2003) Bioengineered ‘golden’ indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1(2):81–90

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta S (2000) Agrobacterium-mediated engineering for sheath blight resistance of India rice cultivars from different ecosystems. Theor Appl Genet 100(6):832–839

    Article  CAS  Google Scholar 

  • FAO (2012) Genetically modified crops, part 4. http://www.fao.org/docrep/015/i2490e/i2490e04d.pdf

  • FAO (2014) Report of the regional workshop on strengthening regional cooperation and national capacity building on biosafety in Asia. http://www.fao.org/3/a-i3902e.pdf

  • Frewer LJ, van der Lans IA, Fischer AR, Reinders MJ, Menozzi D, Zhang X, van den Berg I, Zimmermann KL (2013) Public perceptions of agri-food applications of genetic modification–a systematic review and meta-analysis. Trends Food Sci Technol 30(2):142–152

    Article  CAS  Google Scholar 

  • Friedrichs S, Takasu Y, Kearns P, Dagallier B, Oshima R, Schofield J, Moreddu C (2019) An overview of regulatory approaches to genome editing in agriculture. Biotechnol Res Innov 3(2):208–220

    Article  Google Scholar 

  • Gaj T, Sirk SJ, S-l S, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8(12):a023754

    Article  PubMed  PubMed Central  Google Scholar 

  • George S, Venkataraman G, Parida A (2007) Identification of stress-induced genes from the drought-tolerant plant Prosopis juliflora (Swartz) DC. through analysis of expressed sequence tags. Genome 50(5):470–478

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Ahuja V (2016) Challenges for developing a regulatory dossier by public sector developers in developing countries. http://ilsirf.org/wp-content/uploads/sites/5/2016/06/gupta_ahuja.pdf

  • Herring RJ (2014) On risk and regulation: Bt crops in India. GM Crops Food 5(3):204–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Indian Ministry of Science and Technology (2020) Draft document on genome edited organisms: regulatory framework and guidelines for risk assessment. Indian Ministry of Science and Technology, New Delhi

    Google Scholar 

  • ISAAA (2019) Global Status of Commercialized Biotech/GM Crops in 2019: biotech crops drive socio-economic development and sustainable environment in the new frontier. Executive Summary ISAAA Brief 55. http://www.isaaa.org/

  • James C (2011) Brief 42 global status of commercialized biotech/GM crops: 2010. ISAAA Brief 44

    Google Scholar 

  • James C (2014) ISAAA briefs brief 49 global status of commercialized biotech/GM crops: 2014

    Google Scholar 

  • Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim T-M, Lin Q, Loh C-S, Kumar PP (2014) Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC Plant Biol 14(1):1–16

    Article  Google Scholar 

  • Kandasamy M, Padmavati M (2014) Transgenic crop research and regulation in India: whether legislation rightly drives the motion? J Commer Biotechnol 20:4

    Article  Google Scholar 

  • Karthik K, Nandiganti M, Thangaraj A, Singh S, Mishra P, Rathinam M, Sharma M, Singh NK, Dash PK, Sreevathsa R (2020) Transgenic cotton (Gossypium hirsutum L.) to combat weed vagaries: utility of an apical meristem-targeted in planta transformation strategy to introgress a modified CP4-EPSPS gene for glyphosate tolerance. Front Plant Sci 11

    Google Scholar 

  • Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S (2020) Genetically modified crops: current status and future prospects. Planta 251(4):1–27

    Article  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512

    Article  CAS  PubMed  Google Scholar 

  • Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41(2):63–68

    Article  CAS  PubMed  Google Scholar 

  • McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J 6(1):2–12

    PubMed  Google Scholar 

  • Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T (2020) Genome edited crops touch the market: a view on the global development and regulatory environment. Frontiers Pant Sci:11

    Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L-J (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MoEF Notification (1989) Rules for the manufacture, use, import, export and storage of hazardous microorganisms, genetically engineered organisms or cells. http://envfor.nic.in/legis/hsm/hsm3.html. Accessed 5 Dec 1989

  • Molla KA, Yang Y (2019) CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37(10):1121–1142

    Article  CAS  PubMed  Google Scholar 

  • NAAS (2020) Genome edited plants: accelerating the pace and precision of plant breeding. Policy brief no. 7. National Academy of Agricultural Sciences, New Delhi, pp 1–16

    Google Scholar 

  • Nalluri N, Karri VR (2020) Recent advances in genetic manipulation of crops: a promising approach to address the global food and industrial applications. Plant Sci Today 7(1):70–92

    Article  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom J-S, Li C, Nguyen H, Liu B (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37(11):1344–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman R (2017) The impact of genetically modified (GM) crops in modern agriculture: a review. GM Crops Food 8(4):195–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramkumar N, Rathinam M, Singh S, Kesiraju K, Muniyandi V, Singh NK, Dash PK, Sreevathsa R (2020) Assessment of Pigeonpea (Cajanus cajan L.) transgenics expressing Bt ICPs, Cry2Aa and Cry1AcF under nethouse containment implicated an effective control against herbivory by Helicoverpa armigera (Hübner). Pest Manag Sci 76(5):1902–1911

    Article  CAS  PubMed  Google Scholar 

  • Ricroch A (2019) Global developments of genome editing in agriculture. In: Transgenic research, vol 2. Springer, Berlin, pp 45–52

    Google Scholar 

  • Roberts RJ (2018) The Nobel laureates’ campaign supporting GMOs. J Innov Knowl 3(2):61–65

    Article  Google Scholar 

  • Sahrawat AK, Becker D, Lütticke S, Lörz H (2003) Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165(5):1147–1168

    Article  CAS  Google Scholar 

  • San-Epifanio LE (2017) Towards a new regulatory framework for GM crops in the European Union: scientific, ethical, social and legal issues and the challenges ahead. Academic Publishers, Wageningen

    Book  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Sinebo W, Maredia K (2016) Innovative farmers and regulatory gatekeepers: genetically modified crops regulation and adoption in developing countries. GM Crops Food 7(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith C, Watson C, Ray J, Bird C, Morris P, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334(6184):724–726

    Article  CAS  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • The Guardian (2013) GM crops: the British public still need convincing. http://www.theguardian.com/environment/blog/2013/jun/20/owen-paterson-gm

  • The Independent (2015) The GM crops debate moves to Africa - and it’s just as noisy. http://www.independent.co.uk/news/world/africa/the-gm-crops-debate-moves-to-africa–and-its-justas-noisy-10126512.html

  • The New York Times (2013) Strong support for labeling modified foods. http://www.nytimes.com/2013/07/28/science/strong-support-for-labeling-modified-foods.html?_r=1

  • Thomazella D, Brail Q, Dahlbeck D, Staskawic Z (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv preprint

    Google Scholar 

  • Transkript (2018) Bundesrat Setzt Genscheren auf Agenda. https://transkript.de/meldungen-des-tages/detail/bundesrat-setztgenscheren-auf-agenda.html. Accessed 10 Oct 2019

  • Tsatsakis AM, Nawaz MA, Kouretas D, Balias G, Savolainen K, Tutelyan VA, Golokhvast KS, Lee JD, Yang SH, Chung G (2017) Environmental impacts of genetically modified plants: a review. Environ Res 156:818–833

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nature 4:582

    Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Warrier R, Pande H (2016) Genetically engineered plants in the product development pipeline in India. GM Crops Food 7(1):12–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19(1):1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, V., Negi, S., Kumar, P., Srivastava, D.K. (2021). Global Status of Genetically Modified Crops. In: Kumar Srivastava, D., Kumar Thakur, A., Kumar, P. (eds) Agricultural Biotechnology: Latest Research and Trends . Springer, Singapore. https://doi.org/10.1007/978-981-16-2339-4_13

Download citation

Publish with us

Policies and ethics