Skip to main content

Recent Developments on Electrochemical Sensing Applications Using Vegetable Fiber Based Porous Carbon Materials

  • Chapter
  • First Online:
Vegetable Fiber Composites and their Technological Applications

Part of the book series: Composites Science and Technology ((CST))

  • 483 Accesses

Abstract

Vegetable fiber based porous carbonaceous materials are highly recommended for the development of electrochemical sensors due to their unique features like cost-effectiveness, distinctive structure, sustainability, and regenerative nature. The electrochemical and catalytic activity of the sensors vary based on the surface morphology of the materials including their surface area, pore-volume, and pore size. Their performances could be enhanced by using various techniques like activation and doping. This chapter distinct the significance of various vegetable fiber derived carbonaceous materials for detecting diverse target analytes like heavy metal ions (Lead, Pb2+), biomolecules (progesterone, ascorbic acid, dopamine and uric acid), pollutants (nitrite and hydrogen peroxide), and flavonoids (rutin).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2000) Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous Silica. Chem Mater 12:3301–3305

    Google Scholar 

  2. Omar FS, Duraisamy N, Ramesh K, Ramesh S (2016) Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH). Biosens 79:763–775

    Google Scholar 

  3. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    Google Scholar 

  4. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687

    Google Scholar 

  5. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Google Scholar 

  6. Xu C-X, Huang K-J, Fan Y, Wu Z-W, Li J, Gan T (2012) Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly(4-aminobenzenesulfonic acid) composite film based platform. Mater: C 32.4:969–974

    Google Scholar 

  7. Matos-Peralta Y, Antuch M (2019) Prussian blue and its analogs as appealing materials for electrochemical sensing and biosensing. J Electrochem Soc 167.3:037510

    Google Scholar 

  8. Saleh TA, Ganjar F (2019) Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. TrAC Trends Anal Chem 120:115660

    Google Scholar 

  9. Robert Săndulescu MT, Cristea C, Bodoki new materials for the construction of electrochemical biosensors, biosensors―micro and nanoscale applications. In: Rinken T (ed) Biosensors―micro and nanoscale applications, IntechOpen

    Google Scholar 

  10. Kumar P, Deep A, Kim K-H (2015) Metal organic frameworks for sensing applications. TrAC Trends Analyt Chem 73:39―53

    Google Scholar 

  11. Achmann S et al (2009) Metal-organic frameworks for sensing applications in the gas phase. Sensors 9.3:1574–1589

    Google Scholar 

  12. Meek ST, Greathouse JA, Allendorf MD (2011) Metal—organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23.2:249–267

    Google Scholar 

  13. Cui Y, Li B, He H, Zhou W, Chen B, Qian G (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49(3):483–493

    Article  CAS  Google Scholar 

  14. He L et al (2013) Core–Shell Noble—Metal@ Metal—Organic—framework nanoparticles with highly selective sensing property. Angew 125.13:3829–3833

    Google Scholar 

  15. Fleker O, Borenstein A, Lavi R, Benisvy L, Ruthstein S, Aurbach D (2016) Preparation and properties of metal organic framework/activated carbon composite materials. Langmuir 32(19):4935–4944

    Article  CAS  Google Scholar 

  16. Llobet E (2013) Gas sensors using carbon nanomaterials: a review. Sens Actuators B Chem 179:32–45

    Google Scholar 

  17. Kumar A, Hegde G, Manaf SABA, Ngaini Z, Sharma KV (2014) Catalyst free silica templated porous carbon nanoparticles from bio-waste materials. Chem Comm 50(84):12702–12705

    Article  CAS  Google Scholar 

  18. Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44.11:3639–3665

    Google Scholar 

  19. Pandikumar A, Soon How GT, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA, Lim HN, Huang NM (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4.108:63296–63323

    Google Scholar 

  20. Li S-J, Qian C, Wang K, Hua B-Y, Wang F-B, Sheng Z-H, Xia X-H (2012) Application of thermally reduced graphene oxide modified electrode in simultaneous determination of dihydroxybenzene isomers. Sens Actuators B Chem 174:441–448

    Google Scholar 

  21. MF El-Kady, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335.6074:1326

    Google Scholar 

  22. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217

    Google Scholar 

  23. Seyller T, Bostwick A, Emtsev KV, Horn K, Ley L, McChesney JL, Ohta T, Riley JD, Rotenberg E, Speck F (2008) Epitaxial graphene: a new material 245(7):1436–1446

    CAS  Google Scholar 

  24. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457.7230:706–710

    Google Scholar 

  25. Divyashree A, Manaf SABA, Yallapa S, Chaitra K, Kathyayini N, Gurumurthy H (2016) Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach. J Energy Chem 25.5:880–887

    Google Scholar 

  26. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 3.9:2247–2253

    Google Scholar 

  27. Davies P, Bourmaud A, Pajot A, Baley C (2011) A preliminary evaluation of matricaria maritimum fibres for polymer reinforcement. Ind Crops Prod 34:1652–1654

    Article  CAS  Google Scholar 

  28. Jarabo R, Monte MC, Blanco A, Negro C, Tijero J (2012) Characterisation of agricultural residues used as a source of fibres for fibre-cement production. Ind Crops Prod 36:14–21

    Article  CAS  Google Scholar 

  29. Ilvessalo-Pfäffli MS (1994) Fiber atlas: identification of papermaking fibers. Springer Series in Wood Sciences, New York

    Google Scholar 

  30. Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17.3:515–521

    Google Scholar 

  31. Supriya S et al (2019) The role of temperature on physical–chemical properties of green synthesized porous carbon nanoparticles. Waste Biomass Valorization 1–11

    Google Scholar 

  32. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46.40:14034–14044

    Google Scholar 

  33. Kim D, Lee K, Park KY (2016) Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J Ind Eng Chem 42:95–100

    Article  CAS  Google Scholar 

  34. Sharma HB, Sarmah AK, Dubey B (2020) Hydrothermal carbonization of renewable waste biomass for solid biofuel production: a discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew Sustain Energy Rev 123:109761

    Google Scholar 

  35. Rodriguez Correa C, Hehr T, Voglhuber-Slavinsky A, Rauscher Y, Kruse A (2019) Pyrolysis versus hydrothermal carbonization: understanding the effect of biomass structural components and inorganic compounds on the char properties. J Anal Appl Pyrol 140:137–147

    Google Scholar 

  36. Patwardhan PR, Brown RC, Shanks BH (2011) Product distribution from the fast pyrolysis of hemicellulose. Chem Sus Chem 4.5:636–643

    Google Scholar 

  37. Deng J, Xiong T, Wang H, Zheng A, Wang Y (2016) Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng 4(7):3750–3756

    Article  CAS  Google Scholar 

  38. Barroso Bogeat, A.: Understanding and Tuning the Electrical Conductivity of Activated

    Google Scholar 

  39. Carbon: A State-of-the-Art Review. Crit. Rev. Solid State Mater. Sci. 0, 1–37 (2019).

    Google Scholar 

  40. Hirose T, Fujino T, Fan T, Endo H (2002) Effect of carbonization temperature on the structural changes of woodceramics impregnated with liquefied wood. Carbon N Y 40:761–765

    Google Scholar 

  41. Supriya S, Divyashree A, Yallappa S, Hegde G (2018) Carbon nanospheres obtained from carbonization of bio-resource: a catalyst free synthesis. Mater Today Proc 5:2907–2911

    Article  CAS  Google Scholar 

  42. Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26:111–119

    Article  CAS  Google Scholar 

  43. Lee KK et al (2016) Effects of hydrothermal carbonization conditions on the textural and electrical properties of activated carbons. Carbon N Y 107:619–621

    Article  CAS  Google Scholar 

  44. Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10:46–80

    Article  CAS  Google Scholar 

  45. Yallappa S, Shivakumar M, Nagashree KL, Dharmaprakash MS, Vinu A, Hegde G (2018) Electrochemical determination of nitrite using catalyst free mesoporous carbon nanoparticles from bio renewable areca nut seeds. J Electrochem Soc 165:H614–H619

    Article  CAS  Google Scholar 

  46. Madhu R, Veeramani V, Chen SM, Veerakumar P, Bin LS, Miyamoto N (2016) Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys 18:16466–16475

    Google Scholar 

  47. Li YQ, Samad YA, Polychronopoulou K, Alhassan SM, Liao K (2014) Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain Chem Eng 2:1492–1497

    Article  CAS  Google Scholar 

  48. Dalley JW, Roiser JP (2012) Dopamine serotonin and impulsivity. Nat Rev Neurosci 215:42–58

    Google Scholar 

  49. Cardenas-rodriguez N, Huerta-gertrudis B, Rivera-espinosa L (2013) Role of oxidative stress in refractory epilepsy : evidence in patients and experimental models. Int J Mol Sci 1455–1476

    Google Scholar 

  50. Chazot C, Kopple JD, Tassin-charcot N, Foy S, Lyon L (2013) Vitamin metabolism and requirements in renal disease and renal failure, Nutritional Manage Renal Disease. Elsevier Inc. 415–477

    Google Scholar 

  51. Veeramani V, Madhu R, Chen SM, Lou BS, Palanisamy J, Vasantha VS (2015) Biomass-derived functional porous carbons as novel electrode material for the practical detection of biomolecules in human serum and snail hemolymph. Sci Rep 5:1–9

    Article  Google Scholar 

  52. Duc PA, Dharanipriya P, Velmurugan BK, Shanmugavadivu M (2019) Groundnut shell-a beneficial bio-waste. Biocatal Agric Biotechnol 20:101206

    Article  Google Scholar 

  53. Pang P, Yan F, Chen M, Li H, Zhang Y, Wang H, Wu Z, Yang W (2016) Promising biomass-derived activated carbon and gold nanoparticle nanocomposites as a novel electrode material for electrochemical detection of rutin. RSC Adv 6:90446–90454

    Article  CAS  Google Scholar 

  54. Miao D, Li J, Yang R, Qu J, Qu L, Harrington PDB (2014) Supersensitive electrochemical sensor for the fast determination of rutin in pharmaceuticals and biological samples based on poly (diallyldimethylammonium chloride)-functionalized graphene. J Electroanal 732:17–24

    Article  CAS  Google Scholar 

  55. Yang S, Li G, Wang G, Zhao J, Qiao Z, Qu L (2015) Decoration of chemically reduced graphene oxide modified carbon paste electrode with yttrium hexacyanoferrate nanoparticles for nanomolar detection of rutin. Sens Actuators B Chem 206:126–132

    Article  CAS  Google Scholar 

  56. Akshaya KB, Bhat VS, Varghese A, George L, Hegde G (2019) Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J Electrochem Soc 166: B1097–B1106

    Google Scholar 

  57. J. Liu, Y. Zhao, Q. Wu, A. John, Y. Jiang, J. Yang, H. Liu, B. Yang.: Structure characterisation of polysaccharides in vegetable “okra” and evaluation of hypoglycemic activity, Food Chem 242, 211–216 (2018).

    Google Scholar 

  58. Xu D, Tong Y, Yan T, Shi L, Zhang D (2017) N,P-Codoped Meso-/Microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors. ACS Sustain Chem Eng 5:5810–5819

    Google Scholar 

  59. Zan Y, Zhang Z, Liu H, Dou M, Wang F (2017) Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction. J Mater Chem A 5:24329–24334

    Google Scholar 

  60. Liu S, Han T, Wang Z, Fei T, Zhang T (2019) Biomass-derived nitrogen and phosphorus co-doped hierarchical micro/mesoporous carbon materials for high-performance non-enzymatic H2O2 sensing. Electroanalysis 31:527–534

    Google Scholar 

  61. Thomas T (1998) Handbook of vegetable science and technology: production, composition, storage and processing. In: Salunkhe DK, Kadam SS (eds), Plant growth regul 26:141

    Google Scholar 

  62. Bodo M, Balloni S, Lumare E, Bacci M, Calvitti M, Dell M, Murgia N, Marinucci L (2010) Toxicology in vitro effects of sub-toxic cadmium concentrations on bone gene expression program : results of an in vitro study. Toxicol Vitr 24:1670–1680

    Google Scholar 

  63. Muharrem I, Ince OK (2017) An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. Int J Pure Appl Sci 3.2:10–19

    Google Scholar 

  64. Aragay G, Merkoc A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61

    Article  CAS  Google Scholar 

  65. Xu C, Liu J, Bi Y, Ma C, Bai J, Hu Z, Zhou M (2020) Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (II). Anal Chim Acta 1116:16–26

    Google Scholar 

  66. Wohlgemuth S-A, Fellinger T-P, Jaker P, Antonietti M (2013) Tunable nitrogen-€ doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction. J Mater Chem 1:4002–4009

    Google Scholar 

  67. Madhu R, Veeramani V, Chen SM (2014) Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Sci Rep 4:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurumurthy Hegde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benny, L., Cherian, A.R., Varghese, A., Hegde, G. (2021). Recent Developments on Electrochemical Sensing Applications Using Vegetable Fiber Based Porous Carbon Materials. In: Jawaid, M., Khan, A. (eds) Vegetable Fiber Composites and their Technological Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1854-3_5

Download citation

Publish with us

Policies and ethics