Skip to main content

Hierarchical Vegetal Fiber Reinforced Composites

  • Chapter
  • First Online:
Vegetable Fiber Composites and their Technological Applications

Abstract

Sustainability has become the prime focus nowadays for scientific strategies; hence researchers are keen on developing more sustainable materials displaying properties that may be comparable to conventional materials. Owing to their environmental-friendly nature, sustainability and good specific properties natural fibers have succeeded in attracting many researchers and industries to utilize them as reinforcements in the production of Polymer Matrix Composites (PMCs). However, PMCs reinforced with man-made fibers like carbon, glass, and aramid have exhibited better performance in comparison with PMCs strengthened with cellulosic fibers. One of the reasons for PMCs reinforced with natural fibers displaying lower mechanical properties is the inadequate interfacial adhesion between a hydrophobic matrix and hydrophilic natural fibers. Hence in order to achieve good interfacial bonding among fiber and matrix, a lot of research has been taking place in the direction of achieving hierarchical nature into the composites by incorporating nanomaterials in any of the constituents. In the view of maintaining sustainability, this book chapter emphasizes the detailed description of various natural fibers and green nano reinforcements. A detailed description of inducing hierarchical nature into the biocomposites via incorporating reinforcements at different scales such as Micro Crystalline Cellulose (MCC), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC) and recent studies in this area has been reported in the latter part of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mann GS, Singh LP, Kumar P, Singh S (2018) Green composites: A review of processing technologies and recent applications. J Thermoplast Compos Mater 33:1–27. https://doi.org/10.1177/0892705718816354

    Article  CAS  Google Scholar 

  2. Yıldızhan Ş, Çalık A, Özcanlı M, Serin H (2018) Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. Eur Mech Sci 2:83–91. https://doi.org/10.26701/ems.369005

  3. Bledzki AK, Gassan J (1999) Composites-reinforced-with-cellulose-based-fibres_1999_Progress-in-Polymer-Science.pdf. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  CAS  Google Scholar 

  4. Shekar HSS, Ramachandra M (2018) Green composites: a review. Mater Today Proc 5:2518–2526. https://doi.org/10.1016/j.matpr.2017.11.034

    Article  CAS  Google Scholar 

  5. Jha K, Kataria R, Verma J, Pradhan S (2019) Potential biodegradable matrices and fiber treatment for green composites: a review. AIMS Mater Sci 6:119–138. https://doi.org/10.3934/matersci.2019.1.119

    Article  CAS  Google Scholar 

  6. Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials (Basel) 6:5171–5198. https://doi.org/10.3390/ma6115171

    Article  Google Scholar 

  7. Müssig J, Stevens C (2010) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, Hoboken New Jersy

    Book  Google Scholar 

  8. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. https://doi.org/10.1002/mame.201300008

    Article  CAS  Google Scholar 

  9. Siakeng R, Jawaid M, Ariffin H et al (2018) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:2–18. https://doi.org/10.1002/pc.24747

    Google Scholar 

  10. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271. https://doi.org/10.1080/1023666X.2014.880016

    Article  CAS  Google Scholar 

  11. Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819. https://doi.org/10.1016/j.compositesa.2010.03.005

    Article  CAS  Google Scholar 

  12. Pacheco-Torgal F, Jalali S (2011) Cementitious building materials reinforced with vegetable fibres: a review. Constr Build Mater 25:575–581. https://doi.org/10.1016/j.conbuildmat.2010.07.024

    Article  Google Scholar 

  13. Dani J, Kanny K, Prashantha K (2017) A review on research and development of green composites from plant protein-based polymers. Polym Compos 38:1504–1518. http://.doi.org/10.1002/pc

    Google Scholar 

  14. Moudood A, Rahman A, Öchsner A et al (2019) Flax fiber and its composites: an overview of water and moisture absorption impact on their performance. J Reinf Plast Compos 38:323–339. https://doi.org/10.1177/0731684418818893

    Article  CAS  Google Scholar 

  15. Zafeiropoulos NE (2011) Interface engineering of natural fibre composites for maximum performance. Woodhead Publishing, First

    Book  Google Scholar 

  16. Nilsson T (2015) Micromechanical modelling of natural fibres for composite materials. Lund University

    Google Scholar 

  17. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29. https://doi.org/10.1016/S1369-7021(03)00427-9

    Article  Google Scholar 

  18. Stamboulis A, Baillie CA, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos Part A Appl Sci Manuf 32:1105–1115. https://doi.org/10.1016/S1359-835X(01)00032-X

    Article  Google Scholar 

  19. Nurul Fazita MR, Jayaraman K, Bhattacharyya D et al (2016) Green composites made of bamboo fabric and poly (lactic) acid for packaging applications-a review. Materials (Basel) 9. https://doi.org/10.3390/ma9060435

  20. Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27:52–81. https://doi.org/10.1177/0892705712439571

    Article  CAS  Google Scholar 

  21. Asim M, Abdan K, Jawaid M, et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 1–16. http://dx.doi.org/10.1155/2015/950567

  22. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  23. Khiari R, Mhenni MF, Belgacem MN, Mauret E (2010) Chemical composition and pulping of date palm rachis and Posidonia oceanica - A comparison with other wood and non-wood fibre sources. Bioresour Technol 101:775–780. https://doi.org/10.1016/j.biortech.2009.08.079

    Article  CAS  Google Scholar 

  24. Madakadze IC, Masamvu T (2010) Evaluation of pulp and paper making characteristics of elephant grass (Pennisetum purpureum Schum) and switchgrass (Panicum virgatum L.). Afr J Environ Sci Technol 4:465–470. https://doi.org/10.5897/AJEST10.097

    Article  CAS  Google Scholar 

  25. Ishak MR, Sapuan SM, Leman Z et al (2012) Characterization of sugar palm (Arenga pinnata) fibres Tensile and thermal properties. J Therm Anal Calorim 109:981–989. https://doi.org/10.1007/s10973-011-1785-1

    Article  CAS  Google Scholar 

  26. Girijappa YGT, Rangappa SM, Parameswaranpillai J, Siengchin S (2019) natural fibers as sustainable and renewable resource for development of eco-friendly composites : a comprehensive review. Front Mater 6. https://doi.org/10.3389/fmats.2019.00226

  27. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32:1905–1915. https://doi.org/10.1002/pc.21224

  28. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46. https://doi.org/10.1016/j.addr.2016.04.003

    Article  CAS  Google Scholar 

  29. Pickering KL, Aruan Efendy MG (2016) Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications. Ind Crops Prod 84:139–150. https://doi.org/10.1016/j.indcrop.2016.02.005

    Article  CAS  Google Scholar 

  30. Paridah MT, Jawaid M, Abdan K, N. A. Ibrahim (2015) Manufacturing of natural fibre reinforced polymer composites. In: Salit MS, Mohammad J, Yusoff N Bin, Hoque ME (eds) Manufacturing of natural fibre reinforced polymer composites. Springer International Publishing, Switzerland, pp 1–383

    Google Scholar 

  31. Kovačević Z, Bischof S, Vujasinović E, Fan M (2019) The influence of pre-treatment of Spartium junceum L. fibres on the structure and mechanical properties of PLA biocomposites. Arab J Chem 12:449–463. https://doi.org/10.1016/j.arabjc.2016.08.004

    Article  CAS  Google Scholar 

  32. Sanivada UK, MarMol G, Brito FP, Fangueiro R (2020) PLA composites reinforced with flax and jute fibers—a review of recent trends, processing parameters and mechanical properties. Polymers (Basel) 12:1–29. https://doi.org/10.3390/polym12102373

  33. Charlet K, Jernot JP, Eve S et al (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohydr Polym 82:54–61. https://doi.org/10.1016/j.carbpol.2010.04.022

    Article  CAS  Google Scholar 

  34. Joffe R, Andersons JA, Wallström L (2003) Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Compos Part A Appl Sci Manuf 34:603–612. https://doi.org/10.1016/S1359-835X(03)00099-X

    Article  CAS  Google Scholar 

  35. Bos HL, Müssig J, van den Oever MJA (2006) Mechanical properties of short-flax-fibre reinforced compounds. Compos Part A Appl Sci Manuf 37:1591–1604. https://doi.org/10.1016/j.compositesa.2005.10.011

    Article  CAS  Google Scholar 

  36. Rong MZ, Zhang MQ, Liu Y et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447. https://doi.org/10.1016/S0266-3538(01)00046-X

    Article  CAS  Google Scholar 

  37. Bos HL, Donald AM (1999) In situ ESEM deformation of flax fibres. J Mater Sci 34:3029–3034

    Article  CAS  Google Scholar 

  38. Amiri A, Ulven CA, Huo S (2015) Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition. Polymers (Basel) 7:1965–1978. https://doi.org/10.3390/polym7101493

    Article  CAS  Google Scholar 

  39. Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692

    Article  CAS  Google Scholar 

  40. Baley C (2004) Influence of kink bands on the tensile strength of flax fibers. J Mater Sci 39:331–334. https://doi.org/10.1023/B:JMSC.0000007768.63055.ae

    Article  CAS  Google Scholar 

  41. Yan L, Chouw N, Jayaraman K (2014) Composites: part B flax fibre and its composites—a review. Compos PART B 56:296–317. https://doi.org/10.1016/j.compositesb.2013.08.014

    Article  CAS  Google Scholar 

  42. Jabbar A (2017) Sustainable jute-based composite materials. Springer, Cham

    Book  Google Scholar 

  43. Alam MM, Maniruzzaman M, Morshed MM (2014) Application and advances in microprocessing of natural fiber (jute)-based composites. Elsevier

    Google Scholar 

  44. Gowthaman S, Nakashima K, Kawasaki S (2018) A state-of-the-art review on soil reinforcement technology using natural plant fiber materials: past findings, present trends and future directions. Materials (Basel) 11. https://doi.org/10.3390/ma11040553

  45. Khan JA, Khan MA (2014) The use of jute fibers as reinforcements in composites

    Google Scholar 

  46. Mohanty AK (1987) Graft copolymerization of vinyl monomers onto jute fibers. J Macromol Sci Part C 27:593–639. https://doi.org/10.1080/07366578708078823

    Article  Google Scholar 

  47. Roy S, Lutfar LB (2012) Bast fibres: jute. In: Handbook of natural fibres. Woodhead Publishing Limited, pp 24–46

    Google Scholar 

  48. Chand N, Fahim M (2008) Jute reinforced polymer composites. In: Tribology of natural fiber polymer composites. Woodhead Publishing, pp 108–128

    Google Scholar 

  49. Bhattacharyya D, Subasinghe A, Kim NK (2015) Natural fibers: their composites and flammability characterizations. In: Klaus F, Breuer U (eds) Multi-functionality of polymer composites. Elsevier Inc., Oxford, pp 102–143

    Chapter  Google Scholar 

  50. Mohanty AK, Misra M (1995) Studies on jute composites—a literature review. Polym Plast Technol Eng 34:729–792. https://doi.org/10.1080/03602559508009599

    Article  CAS  Google Scholar 

  51. Rowell RM, Han JS, Rowell JS (2000) Characterization and factors effecting fiber properties. Nat Polym an Agrofibers Compos 115–134

    Google Scholar 

  52. Khan MA, Rahaman MS, Al Jubayer A, Islam JMM (2015) Modification of jute fibers by radiation-induced graft copolymerization and their applications. In: Thakur VK (ed) Cellulose-based graft copolymers: structure and chemistry, 1st edn. Taylor & Francis Group, Boca Raton, pp 209–234

    Google Scholar 

  53. Varghese AM, Mittal V (2017) Surface modification of natural fibers. Elsevier Ltd

    Google Scholar 

  54. Dhakal HN, Zhang Z (2015) The use of hemp fibres as reinforcements in composites. In: Biofiber reinforcements in composite materials. pp 86–103

    Google Scholar 

  55. Thamae T, Aghedo S, Baillie C, Matovic D (2009) Tensile properties of hemp and Agave americana fibres. Handb Tensile Prop Text Tech Fibres 73–99. https://doi.org/10.1533/9781845696801.1.73

  56. Placet V (2009) Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos Part A Appl Sci Manuf 40:1111–1118. https://doi.org/10.1016/j.compositesa.2009.04.031

    Article  CAS  Google Scholar 

  57. Varghese AM, Mittal V (2017) Polymer composites with functionalized natural fibers. Elsevier Ltd

    Google Scholar 

  58. Chand N, Fahim M (2008) Sisal reinforced polymer composites. In: Tribology of natural fiber polymer composites. Woodhead Publishing, pp 84–107

    Google Scholar 

  59. Naveen J, Jawaid M, Amuthakkannan P, Chandrasekar M (2018) Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Elsevier Ltd

    Google Scholar 

  60. Mahbubul M. (2019) Kenaf (Hibiscus cannabinus L., Malvaceae) research and development advances in bangladesh: a review. J Nutr Food Process 2:1–12. https://doi.org/10.31579/2637-8914/010

  61. Lips S, Dam J, Snijder M (2004) Kenaf (Hibiscus cannabinus L.) as a raw material for industrial applications—a market and literature review

    Google Scholar 

  62. Izran K, Mohd Zharif T, Beyer G et al (2014) Kenaf for biocomposite: an overview. J Sci Technol 6:41–66

    Google Scholar 

  63. Nishino T (2004) Natural fibre sources. In: Baillie C (ed) Green composites: polymer composites and the environment. Woodhead Publishing Limited, First, pp 49–80

    Chapter  Google Scholar 

  64. Lips S, Dam J (2013) Kenaf fibre crop for bioeconomic industrial development. In: Monti A, Alexopoulou E (eds) Green energy and technology. Springer, London, London, pp 105–143

    Google Scholar 

  65. Gorbatikh L, Wardle BL, Lomov SV (2016) Hierarchical lightweight composite materials for structural applications. MRS Bull 41:672–677. https://doi.org/10.1557/mrs.2016.170

    Article  Google Scholar 

  66. Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206. https://doi.org/10.1016/j.pmatsci.2007.05.002

    Article  CAS  Google Scholar 

  67. Kim CS, Randow C, Sano T (2015) Hybrid and hierarchical composite materials

    Google Scholar 

  68. Blaker JJ, Lee KY, Bismarck A (2011) Hierarchical composites made entirely from renewable resources. J Biobased Mater Bioenergy 5:1–16. https://doi.org/10.1166/jbmb.2011.1113

    Article  CAS  Google Scholar 

  69. Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes Rendus 7:1052–1056

    Google Scholar 

  70. Spence K, Habibi Y, Dufresne A (2011) Cellulose fibers: bio- and nano-polymer composites

    Google Scholar 

  71. Asim M (2018) Nanocellulose : Preparation method and applications. In: Jawaid M, Boufi S, HPS AK (eds) Cellulose-reinforced nanofibre composites: production properties and application. Elsevier

    Google Scholar 

  72. Nasir M, Hashim R, Sulaiman O, et al (2015) Laccase, an emerging tool to fabricate green composites: a review. BioResources 10:6262–6284. https://doi.org/10.15376/biores.10.3.Nasir

  73. Phanthong P, Reubroycharoen P, Hao X et al (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  74. Islam MN, Rahman F (2019) Production and modification of nanofibrillated cellulose composites and potential applications. Elsevier Ltd

    Google Scholar 

  75. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459. https://doi.org/10.1007/s10086-013-1365-z

    Article  CAS  Google Scholar 

  76. Abitbol T, Rivkin A, Cao Y et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. https://doi.org/10.1016/j.copbio.2016.01.002

    Article  CAS  Google Scholar 

  77. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  78. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  79. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  80. Habibi Y, Goffin AL, Schiltz N et al (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010. https://doi.org/10.1039/b809212e

    Article  CAS  Google Scholar 

  81. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  82. Torres FG, Troncoso OP, Lopez D et al (2009) Reversible stress softening and stress recovery of cellulose networks. Soft Matter 5:4185–4190. https://doi.org/10.1039/b900441f

    Article  CAS  Google Scholar 

  83. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179. https://doi.org/10.1002/smll.200400130

    Article  CAS  Google Scholar 

  84. Cherian BM, Leao AL, Souza SF De, et al (2011) Cellulose fibers: bio- and nano-polymer composites

    Google Scholar 

  85. Lee KY, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. https://doi.org/10.1016/j.compscitech.2014.08.032

    Article  CAS  Google Scholar 

  86. Lu P, Lo Hsieh Y (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. https://doi.org/10.1016/j.carbpol.2011.08.022

    Article  CAS  Google Scholar 

  87. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  88. Kim JH, Shim BS, Kim HS et al (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Green Technol 2:197–213. https://doi.org/10.1007/s40684-015-0024-9

    Article  Google Scholar 

  89. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  90. Lee KY, Bismarck A (2014) Creating hierarchical structures in cellulosic fibre reinforced polymer composites for advanced performance. In: Hodzic A, Robert S (eds) Natural fibre composites: materials, processes and applications. Woodhead Publishing Limited, pp 84–102

    Google Scholar 

  91. Zhong LX, Fu SY, Zhou XS, Zhan HY (2011) Effect of surface microfibrillation of sisal fibre on the mechanical properties of sisal/aramid fibre hybrid composites. Compos Part A Appl Sci Manuf 42:244–252. https://doi.org/10.1016/j.compositesa.2010.11.010

    Article  CAS  Google Scholar 

  92. Karlsson JO, Blachot JF, Peguy A, Gatenholm P (1996) Improvement of adhesion between polyethylene and regenerated cellulose fibers by surface fibrillation. Polym Compos 17:300–304. https://doi.org/10.1002/pc.10614

    Article  CAS  Google Scholar 

  93. Chakrabarty A, Teramoto Y (2018) Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers (Basel) 10. https://doi.org/10.3390/polym10050517

  94. Shojaeiarani J, Bajwa DS, Hartman K (2019) Mechanical techniques for enhanced dispersion of cellulose nanocrystals in polymer matrices. Sustain Polym Compos Nanocomposites 437–449. https://doi.org/10.1007/978-3-030-05399-4_16

  95. Pichandi S, Rana S, Parveen S, Fangueiro R (2018) A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose. Carbohydr Polym 197:137–146. https://doi.org/10.1016/j.carbpol.2018.05.074

    Article  CAS  Google Scholar 

  96. Jabbar A, Militký J, Wiener J et al (2017) Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Compos Struct 161:340–349. https://doi.org/10.1016/j.compstruct.2016.11.062

    Article  Google Scholar 

  97. Kalinka G, Bismarck A, Mantalaris A et al (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromol 9:1643–1651. https://doi.org/10.1021/bm800169g

    Article  CAS  Google Scholar 

  98. Lee KY, Bharadia P, Blaker JJ, Bismarck A (2012) Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos Part A Appl Sci Manuf 43:2065–2074. https://doi.org/10.1016/j.compositesa.2012.06.013

    Article  CAS  Google Scholar 

  99. Parveen S, Pichandi S, Goswami P, Rana S (2020) Novel glass fibre reinforced hierarchical composites with improved interfacial, mechanical and dynamic mechanical properties developed using cellulose microcrystals. Mater Des 188: https://doi.org/10.1016/j.matdes.2019.108448

    Article  CAS  Google Scholar 

  100. Kumar S, Falzon BG, Kun J et al (2020) High performance multiscale glass fibre epoxy composites integrated with cellulose nanocrystals for advanced structural applications. Compos Part A Appl Sci Manuf 131:1–12. https://doi.org/10.1016/j.compositesa.2020.105801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanivada, U.K., Mármol, G., Fangueiro, R. (2021). Hierarchical Vegetal Fiber Reinforced Composites. In: Jawaid, M., Khan, A. (eds) Vegetable Fiber Composites and their Technological Applications. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1854-3_17

Download citation

Publish with us

Policies and ethics