Skip to main content

Cold Plasma Hurdled Strategies for Food Safety Applications

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety

Abstract

The application of hurdle interventions can improve the microbicidal efficacy as well as assure the food quality. Cold plasma (CP) is a promising decontamination technology and has gained a lot of interests in food industry. In recent few years, the combination of CP with other techniques (e.g., mild heat, organic acids, essential oils, ultrasound, bacteriophage) has been proposed and attracted a lot of interest. In this chapter, a comprehensive summary about the current status of cold plasma-based hurdle technologies was provided. Furthermore, the factors (e.g., treatment sequence, equipment configuration, microbial properties) affecting the antimicrobial efficacy of cold plasma-based hurdle have also been presented in detail, which should be carefully considered during designing and optimizing the hurdle technique. The effects of cold plasma-based technologies on the quality attributes (e.g., color, texture, flavor) of food were also evaluated in this chapter. More cold plasma-based hurdle technologies with efficient antimicrobial efficacy and good quality retainment require further research to discover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuladze T, Li M, Menetrez MY et al (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74:6230–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Muhammad AI, Hu Y et al (2020) Inactivation kinetics of Bacillus cereus spores by plasma activated water (PAW). Food Res Int 131:109041

    Article  CAS  PubMed  Google Scholar 

  • Bandara N, Jo J, Ryu S et al (2012) Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiol 31:9–16

    Article  CAS  PubMed  Google Scholar 

  • Bang IH, Kim YE, Lee SY et al (2020) Microbial decontamination of black peppercorns by simultaneous treatment with cold plasma and ultraviolet C. Innov Food Sci Emerg Technol 63:102392

    Article  CAS  Google Scholar 

  • Bi Jeon E, Choi MS, Kim JY et al (2020) Synergistic effects of mild heating and dielectric barrier discharge plasma on the reduction of Bacillus cereus in red pepper powder. Foods 9(2):171

    Article  Google Scholar 

  • Bigwood T, Hudson J, Billington C et al (2008) Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol 25(2):400–406

    Article  CAS  PubMed  Google Scholar 

  • Bourke P, Ziuzina D, Boehm D et al (2018) The potential of cold plasma for safe and sustainable food production. Trends Biotechnol 36(6):615–626

    Article  CAS  Google Scholar 

  • Boyle W (1955) Spices and essential oils as preservatives. Am Perfum Essent Oil Rev 66:25–28

    Google Scholar 

  • Brul S, Coote P (1999) Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  PubMed  Google Scholar 

  • Calo JR, Crandall PG, O’Bryan CA et al (2015) Essential oils as antimicrobials in food systems-a review. Food Control 54:111–119

    Article  CAS  Google Scholar 

  • Chaplot S, Yadav B, Jeon B et al (2019) Atmospheric cold plasma and peracetic acid-based hurdle intervention to reduce Salmonella on raw poultry meat. J Food Prot 82(5):878–888

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Lee HM, Chen SH et al (2009) Ultrasound-assisted plasma: a novel technique for inactivation of aquatic microorganisms. Environ Sci Technol 43(12):4493–4497

    Article  CAS  PubMed  Google Scholar 

  • Choi EJ, Park HW, Kim SB et al (2019) Sequential application of plasma-activated water and mild heating improves microbiological quality of ready-to-use shredded salted kimchi cabbage (Brassica pekinensis L.). Food Control 98:501–509

    Article  CAS  Google Scholar 

  • Cosentino SCIG, Tuberoso CIG, Pisano B et al (1999) In-vitro antimicrobial activity and chemical composition of Sardinian thymus essential oils. Lett Appl Microbiol 29(2):130–135

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Li W, Li C et al (2016a) Synergistic effect between Helichrysum italicum essential oil and cold nitrogen plasma against Staphylococcus aureus biofilms on different food-contact surfaces. Int J Food Sci Technol 51(11):2493–2501

    Article  CAS  Google Scholar 

  • Cui H, Ma C, Lin L (2016b) Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157: H7 biofilms on lettuce. Food Control 66:8–16

    Article  CAS  Google Scholar 

  • Cui H, Wu J, Li C et al (2017) Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. J Food Saf 37(2):e12316

    Article  Google Scholar 

  • Cui H, Bai M, Yuan L et al (2018) Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157: H7 biofilms on different vegetables. Int J Food Microbiol 268:1–9

    Article  CAS  PubMed  Google Scholar 

  • Dorman HD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88(2):308–316

    Article  CAS  PubMed  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interf Sci 363(1):1–24

    Article  CAS  Google Scholar 

  • Echegoyen Y, Nerín C (2015) Performance of an active paper based on cinnamon essential oil in mushrooms quality. Food Chem 170:30–36

    Article  CAS  PubMed  Google Scholar 

  • Fernández A, Noriega E, Thompson A (2013) Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol 33(1):24–29

    Article  PubMed  Google Scholar 

  • Georgescu N, Apostol L, Gherendi F (2017) Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control 76:52–61

    Article  CAS  Google Scholar 

  • Gómez PL, Welti-Chanes J, Alzamora SM (2011) Hurdle technology in fruit processing. Annu Rev Food Sci Technol 2:447–465

    Article  PubMed  Google Scholar 

  • Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69:5032–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Liu K, Manaloto E et al (2018) Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic u373mg cancer cell death. Sci Rep 8(1):1–11

    Google Scholar 

  • Helgadóttir S, Pandit S, Mokkapati VR et al (2017) Vitamin C pretreatment enhances the antibacterial effect of cold atmospheric plasma. Front Cell Infect Microbiol 7:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Chen H (2011) Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157: H7 on baby spinach. Food Control 22(8):1178–1183

    Article  CAS  Google Scholar 

  • Hugo CJ, Hugo A (2015) Current trends in natural preservatives for fresh sausage products. Trends Food Sci Technol 45(1):12–23

    Article  CAS  Google Scholar 

  • Lang LH (2006) FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131(5):1370

    PubMed  Google Scholar 

  • Leistner L (1978) Hurdle effect and energy saving. In: Downey WK (ed) . Food quality and nutrition, Applied Science Publishers, London, pp 553–557

    Google Scholar 

  • Leistner L (1994) Further developments in the utilization of hurdle technology for food preservation. J Food Eng 22:421–432

    Article  Google Scholar 

  • Lianou A, Koutsoumanis KP, Sofos JN (2012) Organic acids and other chemical treatments for microbial decontamination of food. In: Demirci A, Ngadi MO (eds) Microbial decontamination in the food industry: novel methods and applications. Woodhead Publishing, Cambridge

    Google Scholar 

  • Liao X, Liu D, Xiang Q et al (2017) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    Article  CAS  Google Scholar 

  • Liao X, Li J, Suo Y et al (2018a) Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res Int 105:178–183

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Li J, Muhammad AI et al (2018b) Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus. Food Control 90:241–248

    Article  Google Scholar 

  • Liao X, Muhammad AI, Chen S et al (2019) Bacterial spore inactivation induced by cold plasma. Crit Rev Food Sci Nutr 59(16):2562–2572

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Xiang Q, Cullen PJ et al (2020a) Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT 117:108649

    Article  CAS  Google Scholar 

  • Liao X, Bai Y, Muhammad AI et al (2020b) The application of plasma-activated water combined with mild heat for the decontamination of Bacillus cereus spores in rice (Oryza sativa L. ssp. japonica). J Phys D Appl Phys 53(6):064003

    Article  CAS  Google Scholar 

  • Liao X, Cullen PJ, Muhammad AI et al (2020c) Cold plasma-based hurdle interventions: new strategies for improving food safety. Food Eng Rev 12:321–332

    Article  Google Scholar 

  • Mahnot NK, Mahanta CL, Farkas BE et al (2019) Atmospheric cold plasma inactivation of Escherichia coli and Listeria monocytogenes in tender coconut water: inoculation and accelerated shelf-life studies. Food Control 106:106678

    Article  CAS  Google Scholar 

  • Matan N, Nisoa M, Matan N (2014) Antibacterial activity of essential oils and their main components enhanced by atmospheric RF plasma. Food Control 39:97–99

    Article  CAS  Google Scholar 

  • Matan N, Puangjinda K, Phothisuwan S et al (2015) Combined antibacterial activity of green tea extract with atmospheric radio-frequency plasma against pathogens on fresh-cut dragon fruit. Food Control 50:291–296

    Article  CAS  Google Scholar 

  • Modi R, Hirvi Y, Hill A et al (2001) Effect of phage on survival of Salmonella Enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Prot 64(7):927–933

    Article  CAS  PubMed  Google Scholar 

  • Muhammad AI, Chen W, Liao X et al (2019) Effects of plasma-activated water and blanching on microbial and physicochemical properties of tiger nuts. Food Bioprocess Technol 12(10):1721–1732

    Article  CAS  Google Scholar 

  • Pan Y, Zhang Y, Cheng JH et al (2020) Inactivation of Listeria monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma. LWT-Food Sci Technol 118:108635

    Article  CAS  Google Scholar 

  • Piyasena P, Mohareb E, McKellar R (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 87(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Ricke SC (2003) Perspectives of the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639

    Article  CAS  PubMed  Google Scholar 

  • Ross AI, Griffiths MW, Mittal GS et al (2003) Combining nonthermal technologies to control foodborne microorganisms. Int J Food Microbiol 89(2–3):125–138

    Article  PubMed  Google Scholar 

  • Shen S, Zhang T, Yuan Y et al (2015) Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 47:196–202

    Article  CAS  Google Scholar 

  • Singh S, Shalini R (2016) Effect of hurdle technology in food preservation: a review. Crit Rev Food Sci Nutr 56(4):641–649

    Article  CAS  PubMed  Google Scholar 

  • Soffer N, Woolston J, Li M et al (2017) Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS One 12:e0175256

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukumaran AT, Nannapaneni R, Kiess A et al (2015) Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int J Food Microbiol 207:8–15

    Article  CAS  PubMed  Google Scholar 

  • Theron MM, Lues JFR (2011) Organic acids and food preservation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Toyokawa Y, Yagyu Y, Misawa T et al (2017) A new roller conveyer system of non-thermal gas plasma as a potential control measure of plant pathogenic bacteria in primary food production. Food Control 72:62–72

    Article  CAS  Google Scholar 

  • Trevisani M, Berardinelli A, Cevoli C et al (2017) Effects of sanitizing treatments with atmospheric cold plasma, SDS and lactic acid on verotoxin-producing Escherichia coli and Listeria monocytogenes in red chicory (radicchio). Food Control 78:138–143

    Article  CAS  Google Scholar 

  • Vilchèze C, Hartman T, Weinrick B et al (2013) Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 4:1881

    Article  PubMed  Google Scholar 

  • Xiang Q, Liu X, Liu S et al (2019) Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innov Food Sci Emerg Technol 52:49–56

    Article  CAS  Google Scholar 

  • Xiang Q, Zhang R, Fan L et al (2020) Microbial inactivation and quality of grapes treated by plasma-activated water combined with mild heat. LWT-Food Sci Technol 126:109336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, X., Zhang, Y., Zhao, X., Ding, T. (2022). Cold Plasma Hurdled Strategies for Food Safety Applications. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_14

Download citation

Publish with us

Policies and ethics