Skip to main content

Synthesis and Processing of Magnetic-Based Nanomaterials for Biomedical Applications

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Abstract

Recent developments in the design, synthesis, and processing of magnetic nanomaterials have gained immense attention for various biomedical applications. Magnetic nanomaterial-mediated therapy and diagnostic applications have opened up new avenues for cancer therapy in terms of non-toxicity, biocompatibility, chemical stability, size, shape, and composition. This chapter covers a detailed account of the synthesis methods (chemical and biological) and the surface functionalization process determining the physico-chemical properties of the nanomaterials favorable for biomedical applications. Finally, a detailed overview of distinctive applications of magnetic-based nanomaterials in the field of magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging and biosensing has been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACMF:

Alternating current magnetic field`

[bmim][BF4]:

1-Butyl-3-methylimidazolium tetrafluoroborate

CL:

Chemiluminescence

CNT:

Carbon nanotube

CPE:

Carbon paste electrode

cRGD:

Cyclic arginine-glycine-aspartate

CRP:

C-reactive protein

CT:

Computed tomography

CTAB:

Cetyltrimethylammonium bromide

CV:

Cyclic voltammetry

DMSA:

Dimercaptosuccinic acid

DNA:

Deoxyribonucleic acid

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOX:

Doxorubicin

DPV:

Differential pulse voltammetry

EC:

Electrochemical

EPR:

Enhanced permeability and retention

FDA:

Food and Drug Administration

FITC:

Fluorescein isothiocyanate

GO:

Graphene oxide

IONPs:

Iron oxide nanoparticles

IR:

Infrared

LOD:

Low limit of detection

LSPR:

Localized surface plasmon resonance

MF:

Magnetic field

MHT:

Magnetic hyperthermia

MNPs:

Magnetic Nanoparticles

MRI:

Magnetic resonance imaging

MWA:

Microwave-assisted

MWCNTs:

Multi-walled carbon nanotubes

NIR:

Near-infrared

NMR:

Nuclear Magnetic Resonance

NOTA:

1,4,7-Triazacyclononane-N,N′,N″-triacetic acid

NPs:

Nanoparticles

PAA:

Polyacrylic acid

PAA-b-PS:

Poly (acrylic acid)-b-polystyrene

PANI:

Polyaniline

PDA:

Polydopamine

PEG:

Polyethylene glycol

PEGDE:

Pentaethylene glycol dodecyl ether

PEI:

Polyethylenimine

PET:

Positron emission tomography

PMMA:

Poly(methyl methacrylate)

PS:

Polystyrene

PTT:

Photothermal therapy

PVA:

Polyvinyl alcohol

PVP:

Polyvinylpyrrolidine

QCM:

Quartz-crystal microbalance

SAR:

Specific absorption rate

SPIONs:

Superparamagnetic iron oxide nanoparticles

SPR:

Surface plasmon resonance

TEM:

Transmission electron microscopy

TMA:

Thiomalic acid

TOPSe:

Trioctyl phosphine selenide

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics. CA: A Cancer Journal for Clinicians 70:7–30

    Google Scholar 

  2. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Can 17:20–37

    Google Scholar 

  3. Mrówczyński R (2018) Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS App. Mat. & Inter. 10:7541–7561

    Google Scholar 

  4. Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomat 32:7139–7150

    Google Scholar 

  5. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mat 8:331–336

    Google Scholar 

  6. Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Cont. Rel. 153:16–22

    Google Scholar 

  7. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Canc. Res. 68:6652–6660

    Google Scholar 

  8. Bae KH, Lee K, Kim C, Park TG (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomat 32:176–184

    Google Scholar 

  9. Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D et al (2011) Folic acid-conjugated Silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomat 32:9796–9809

    Google Scholar 

  10. Wu M, Huang S (2017) Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. & Clin. Onc. 7:738–746

    Google Scholar 

  11. Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X et al (2020) Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Ther 10:3793–3815

    Google Scholar 

  12. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F et al (2018) Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug. Del. Rev. 130:17–38

    Google Scholar 

  13. Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6:11553–11573

    Google Scholar 

  14. Ramachandra KSA, Thomas RG, Unnithan AR, Saravanakumar B, Jeong YY, Park CH et al (2016) Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging. Sci Rep 6:20543

    Google Scholar 

  15. Zhao S, Yu X, Qian Y, Chen W, Shen J (2020) Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 10:6278–6309

    Google Scholar 

  16. Thakor AS, Jokerst JV, Ghanouni P, Campbell JL, Mittra E, Gambhir SS (2016) Clinically Approved Nanoparticle Imaging Agents. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 57:1833–1837

    Google Scholar 

  17. Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology 30:1–14

    Google Scholar 

  18. Figuerola A, Di CR, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    Google Scholar 

  19. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501

    Google Scholar 

  20. Khaledian M, Nourbakhsh MS, Saber R, Hashemzadeh H, Darvishi MH (2020) Preparation and Evaluation of Doxorubicin-Loaded PLA-PEG-FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy. Int J Nanomedicine 15:6167–6182

    Google Scholar 

  21. Ningthoujam RS, Vatsa RK, Kumar A, Pandey BN (2012) Functionalized magnetic nanoparticles: concepts, synthesis and application in cancer hyperthermia. In: Banerjee S, Tyagi AK (eds). Elsevier Inc., USA. Chapter 6, 229–260.

    Google Scholar 

  22. Vines JB, Yoon J-Y, Ryu N-E, Lim D-J, Park H (2019) Gold Nanoparticles for Photothermal Cancer Therapy. Front Chem 7:167

    Google Scholar 

  23. Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z (2014) A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomat 35:5847–5861

    Google Scholar 

  24. Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-Induced Aggregation of Gold Nanoparticles for Photothermal Cancer Therapy. J Am Chem Soc 131:13639–13645

    Google Scholar 

  25. Chakravarty R, Chakraborty S, Ningthoujam RS, Nair KVV, Sharma KS, Ballal A, Guleria A, Kunwar A, Sarma HD, Vatsa RK, Dash A (2016) Industrial-scale synthesis of intrinsically radiolabeled 64CuS nanoparticles for use in positron emission tomography (PET) imaging of cancer. Ind Eng Chem Res 55:12407–12419

    Google Scholar 

  26. Feng W, Wang R, Zhou Y, Ding L, Gao X, Zhou B, Hu P, Chen Y (2019) Ultrathin molybdenum Carbide MXene with fast biodegradability for highly efficient theory‐oriented photonic tumor hyperthermia. Adv Funct Mater 29:901942

    Google Scholar 

  27. Ningthoujam RS, Vatsa RK, Prajapat CL, Yashwant G, Ravikumar G (2010) Interaction between amorphous ferromagnetic Co–Fe–B particles in conducting silver matrix prepared by chemical reduction route. J. Alloys Comp. (Letters) L40:492

    Google Scholar 

  28. Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, Respaud M, Chaudret B (2012) A Simple Chemical Route toward Monodisperse Iron Carbide Nanoparticles Displaying Tunable Magnetic and Unprecedented Hyperthermia Properties. Nano Lett 12:4722–4728

    Google Scholar 

  29. Hamayun MA, Abramchuk M, Alnasir H, Khan M, Pak C, Lenhert S, Ghazanfari L, Shatruk M, Manzoor S (2018) Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles. J Magn Magn Mater 451:407–413

    Google Scholar 

  30. Ningthoujam RS, Gajbhiye NS (2010) Magnetization studies on ε- Fe2.4Co0.6N nanoparticles. Mater Res Bull 45:499

    Google Scholar 

  31. Ali A, Zafar H, Zia M, Haq U I, Phull A R, Ali J S et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol sci appl 9:49–67

    Google Scholar 

  32. Michelle M, Joseph M, Renee F (2008) Determining the solubility product of Fe(OH)3: An equilibrium study with environmental significance. J Chem Educ 85:254

    Google Scholar 

  33. Patil RM, Shete PB, Thorat ND, Otari SV, Barick KC, Prasad AI, Ningthoujam RS, Tiwale BM, Pawar SH (2014) Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility. J Magn Magn Mater 355:22–30

    Google Scholar 

  34. Patil RM, Shete PB, Thorat ND, Otari SV, Prasad AI, Ningthoujam RS, Tiwale B, Pawar SH (2014) Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Adv 4:4515–4522

    Google Scholar 

  35. Prasad AI, Parchur AK, Juluri RR, Jadhav N, Pandey BN, Ningthoujam RS, Vatsa RK (2013) Bi-functional properties of Fe3O4@YPO4: Eu hybrid nanoparticles: Hyperthermia application. Dalton Trans 42:4885–4896

    Google Scholar 

  36. Parchur AK, Ansari AA, Singh BP, Hasan TN, Syed NA, Rai SB, Ningthoujam RS (2014) Enhanced luminescence of CaMoO4: Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: Cytotoxicity assessing on human liver cancer cells and mesanchymal stem cells. Integr Biol 6:53–64

    Google Scholar 

  37. Shete PK, Patil RM, Ningthoujam RS, Ghosh S, Pawar SH (2013) Magnetic core shell structures for magnetic fluid hyperthermia therapy application. New J Chem 37:3784–3792

    Google Scholar 

  38. Ningombam GS, Ningthoujam RS, Kalkura SN, Singh NR (2018) Induction heating efficiency of water dispersible Mn0.5Fe2.5O4@YVO4:Eu3+ magnetic-luminescent nanocomposites in acceptable AC magnetic field: Haemocompatibility and cytotoxicity studies. J Phys Chem B 122:6862–6871

    Google Scholar 

  39. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Google Scholar 

  40. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37

    Google Scholar 

  41. Joshi R, Singh BP, Ningthoujam RS (2020) Confirmation of highly stable 10 nm sized Fe3O4 nanoparticle formation at room temperature and understanding of heat-generation under AC magnetic fields for potential application in hyperthermia. AIP Adv 10:105033

    Google Scholar 

  42. Peternele WS, Monge FV, Fascineli ML, Rodrigues da SJ, Silva RC, Lucci CM et al (2014) Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties. J Nanomater 682985

    Google Scholar 

  43. Ahn T, Kim JH, Yang HM, Lee JW, Kim JD (2012) Formation pathways of magnetite nanoparticles by coprecipitation method. J Phy Chem C 116:6069–6076

    Google Scholar 

  44. Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296

    Google Scholar 

  45. Martina MS, Fortin JP, Ménager C, Clément O, Barratt G, Grabielle MC et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127:10676–10685

    Google Scholar 

  46. Chakraborty S, Sharma KS, Rajeswari A, Vimalnath KV, Sarma HD, Pandey U, Jagannath, Ningthoujam RS, Vatsa RK, Dash A (2015) Radiolanthanide-loaded agglomerated Fe3O4 nanoparticles for possible use in the treatment of arthritis: formulation, characterization and evaluation in rats. J Mater Chem B 3:5455–5466

    Google Scholar 

  47. Singhal P, Pulhani V, Ali SM, Ningthoujam RS (2019) Sorption of different metal ions on magnetic nanoparticles and their effect on nanoparticles settlement. Environ Nanotechnol Monitor Manag 11:100202

    Google Scholar 

  48. Joshi R, Singh BP, Ningthoujam RS (2020) Confirmation of highly stable 10 nm sized Fe3O4 nanoparticle formation at room temperature and understanding of heat-generation under AC magnetic fields for potential application in hyperthermia. AIP Adv 10:105033

    Google Scholar 

  49. Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK (2014) Enhanced specific absorption rate in silanol functionalized Fe3O4 core - shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf, B 122:396–403

    Google Scholar 

  50. Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, Davaran S (2017) Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artificial cells, nanomedicine, and biotechnology 45:6–17

    Google Scholar 

  51. Li J, Wu Q, Wu J (2015) Synthesis of nanoparticles via solvothermal and hydrothermal methods. Handbook of nanoparticles © Springer International Publishing Switzerland

    Google Scholar 

  52. Gyergyek S, Makovec D, Jagodič M, Drofenik M, Schenk K, Jordan O et al (2017) Hydrothermal growth of IONPs with a uniform size distribution for magnetically induced hyperthermia: Structural, colloidal and magnetic properties. J All Comp 694:261–271

    Google Scholar 

  53. Chen F, Bu W, Lu C, Chen G, Chen M, Shen X et al (2011) Hydrothermal synthesis of a highly sensitive T2-weigthed MRI contrast agent: zinc-doped superparamagnetic iron oxide nanocrystals. J Nanosci Nanotechnol 11(12):10438–10443

    Google Scholar 

  54. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G et al (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–8392

    Google Scholar 

  55. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    Google Scholar 

  56. Patil AB, Bhanage BM (2016) Sonochemistry: A greener protocol for nanoparticles synthesis. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer International Publishing, Cham, pp 143–166

    Google Scholar 

  57. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    Google Scholar 

  58. Dolores R, Raquel S, Adianez GL (2015) Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: Effect of ultrasonic frequency. Ultrason Sonochem 23:391–398

    Google Scholar 

  59. Ashokkumar M (2016) Advantages, disadvantages and challenges of ultrasonic technology, pp 41–42

    Google Scholar 

  60. Abbas M, Takahashi M, Kim C (2012) Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J Nanopart Res 15:1354

    Google Scholar 

  61. Zemb TN, Klossek M, Lopian T, Marcus J, Schöettl S, Horinek D, Prevost SF, Touraud D, Diat O, Marčelja S, Kunz W (2016) How to explain microemulsions formed by solvent mixtures without conventional surfactants. Proceedings of National Academy of Sciences 113:4260–4265

    Google Scholar 

  62. Hoar TP, Schulman JH (1943) Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152:102–103

    Google Scholar 

  63. Gillberg G, Lehtinen H, Friberg S (1970) NMR and IR investigation of the conditions determining the stability of microemulsions. J Colloid Interface Sci 33:40–53

    Google Scholar 

  64. Luwang MN, Ningthoujam RS, Srivastava SK, Vatsa RK (2011) Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies. J Mater Chem 21:5326

    Google Scholar 

  65. Asab G, Zereffa EA, Abdo ST (2020) Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: Characterization and evaluation of antimicrobial activity. Int J Biomater 2020:4783612

    Google Scholar 

  66. Singh P, Upadhyay C (2018) Fine tuning of size and morphology of magnetite nanoparticles synthesized by microemulsion. AIP Conf Proc 1953:030051

    Google Scholar 

  67. Nayeem J, Al-Bari MAA, Mahiuddin M, Rahman MA, Mefford OT, Ahmad H et al (2020) Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization. Colloids Surf Physicochem Eng Aspects 25857

    Google Scholar 

  68. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab J Chem 5:397–417

    Google Scholar 

  69. Li GR, Xu H, Lu XF, Feng JX, Tong YX, Su CY (2013) Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5:4056–4069

    Google Scholar 

  70. Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402

    Google Scholar 

  71. Aghazadeh M, Karimzadeh I, Ganjali MR (2017) Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J Mater Sci: Mater Electron 28:13532–13539

    Google Scholar 

  72. Fajaroh F, Nazriati, Yahmin, Marfu’ah S, Sumari, Nur A (2018) Synthesis of Fe3O4 Nanoparticles using PEG Template by Electrochemical Method. J Phys Conf Ser 093:012022

    Google Scholar 

  73. Wu W, Jiang CZ, Roy VAL (2016) Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8:19421–19474

    Google Scholar 

  74. Sikka S (2005) Handbook of sol-gel science and technology: Processing, characterization and applications. Kluwar Academic Publishers

    Google Scholar 

  75. Umare SS, Ningthoujam RS, Sharma SJ, Shrivastava S, Kurian S, Gajbhiye NS (2008) Mössbauer and magnetic studies on nanocrystalline NiFe2O4 particles prepared by ethylene glycol route. Hyperfine Interact 184:235

    Google Scholar 

  76. Ningthoujam RS, Gajbhiye NS, Sachil S (2009) Reduction mechanism of Ni2+ into Ni nanoparticles prepared from different precursors: Magnetic studies. Pramana J Phys 72:577

    Google Scholar 

  77. Gajbhiye NS, Bhattacharyya S, Balaji G, Ningthoujam RS, Das RK, Basak S, Weissmuller J (2005) Mössbauer and magnetic studies of MFe2O4 (M = Co, Ni). Hyperfine Interact 165:153

    Google Scholar 

  78. Takai Z, Mustafa M, Asman S, Sekak K (2019) Preparation and characterization of magnetite (Fe3O4) nanoparticles By Sol-Gel method. Int J Nanoelectronics Mater12:37–46

    Google Scholar 

  79. Jacintha A, Umapathy V, Neeraja P, S RJR (2017) Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities. J Nanostruct Chem 7:375–387

    Google Scholar 

  80. Borhan A, Herea DD, Gherca D, Stavila C, Minuti AE, Grigoras M et al (2020) Flash-cooling assisted sol-gel self-ignited synthesis of magnetic carbon dots-based heterostructure with antitumor properties. Mater Sci Eng C 117:111288

    Google Scholar 

  81. Dalal M, Greneche JM, Satpati B Ghzaiel TB, Mazaleyrat F, Ningthoujam RS et al (2017) Microwave absorption and the magnetic hyperthermia applications of Li0.3Zn0.3Co0.1Fe2.3O4 nanoparticles in multiwalled carbon nanotube matrix. ACS Appl Mater Interf 9:40831–40845

    Google Scholar 

  82. Carter RE (1961) Mechanism of solid‐state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J Am Ceram Soc 44:116–120

    Google Scholar 

  83. Sudhakar N, Ningthoujam RS, Gajbhiye NS, Rajeev KP (2007) Structural, magnetic and electron transport studies on nanocrystalline layered manganite La1.2Ba1.8Mn2O7 system. J Nanosci Nanotech 7:965

    Google Scholar 

  84. Shukla R, Tyagi AK (2010) Phase stability of rare-earth based mixed oxides in nano-regime: Role of synthesis in thermal and thermodynamic stability of nanomaterials, S. C. Parida. Trans. Tech publisher Materials Science Forum 653:131-152.

    Google Scholar 

  85. Shukla R, Dutta DP, Ramkumar J, Mandal BP, Tyagi AK (2013) Nanocrystalline functional oxide materials in handbook of nanomaterials by R. Vajtai; Springer Publisher, pp 517-552

    Google Scholar 

  86. Thorat ND, Shinde KP, Barick KC, Pawar SH, Betty CA, Ningthoujam RS (2012) Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans 41:3060

    Google Scholar 

  87. Jadhav SV, Nikam DS, Khot VM, Thorat ND, Phadatare MR, Ningthoujam RS, Salunkhe AB, Pawar SH (2013) Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J Chem 37:3121

    Google Scholar 

  88. Thorat ND, Khot VM, Salunkhe AB, Prasad AI, Ningthoujam RS, Pawar SH (2013) Surface functionalized La0.7Sr0.3MnO3nanoparticles with improved colloidal stability for hyperthermia applications. J Phys D 46:105003

    Google Scholar 

  89. Thorat ND, Khot VM, Salunkhe AB, Ningthoujam RS, Pawar SH (2013) Functionalization of La0.7Sr0.3MnO3 nanoparticles with polymer: Studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Colloids Surf Biointerf 104:40–47

    Google Scholar 

  90. Thorat ND, Otari SV, Patil RM, Bohara RA, Yadav HM, Koli VB, Chaurasia AK, Ningthoujam RS (2014) Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. Dalton Trans 43:17343–17351

    Google Scholar 

  91. Thorat ND, Patil RM, Khot VM, Salunkhe AB, Prasad AI, Barick KC, Ningthoujam RS, Pawar SH (2013) Highly water dispersible surface functionalized LSMO nanoparticles for magnetic fluid hyperthermia application. New J Chem 37:2733

    Google Scholar 

  92. Ningthoujam RS, Umare SS, Sharma SJ, Shukla R, Kurian S, Vatsa RK, Tyagi AK, Tewari R, Dey GK, Gajbhiye NS (2008) Magnetic and Mössbauer studies on nanocrystalline Co1-xLixFe2O4 (x = 0, 0.2). Hyperfine Interact 184:227

    Google Scholar 

  93. Shukla R, Ningthoujam RS, Umare SS, Sharma SJ, Kurian S, Vatsa RK, Tyagi AK, Gajbhiye NS (2008) Decrease of superparamagnetic fraction at room temperature in ultrafine CoFe2O4 particles by Ag doping. Hyperfine Interact 184:217

    Google Scholar 

  94. Thorat ND, Otari SV, Bohara RA, Yadav HM, Khot VM, Salunkhe AB, Phdatre MR, Prasad AI,, Ningthoujam RS, Pawar SH (2014) Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: Synthesis, colloidal stability and biocompatibility evaluation. Mater Sci Eng C 42:637–646

    Google Scholar 

  95. Thorat ND, Otari SC, Patil RM, Khot VM, Prasad AI, Ningthoujam RS, Pawar SH (2013) Enhanced colloidal stability of polymer coated La0.7Sr0.3MnO3 nanoparticles in physiological media for hyperthermia application. Colloids SurfB: Biointerf 111:264

    Google Scholar 

  96. Dalal M, Das A, Das D, Ningthoujam RS, Chakrabarti PK (2018) Studies of magnetic, Mössbauer spectroscopy, microwave absorption and hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multi-walled carbon nanotubes. J Magn Magn Mater 460:12–27

    Google Scholar 

  97. Gajbhiye NS, Vijayalakshmi A, Weissmuller J (2002) Magnetic Properties of Nanosize Lead Hexaferrite Particles. Phys. Stat. Sol. (a) 189:685–689

    Google Scholar 

  98. Sankaranarayanan VK, Gajbhiye NS (1991) Spectrochemical investigations of ultrafine amorphous and crystalline rare earth iron garnets. J Solid State Chem 93:134–145

    Google Scholar 

  99. Jadhav NV, Prasad AI, Kumar A, Mishra R, Dhara S, Babu KR, Prajapat CL, Misra NL, Ningthoujam RS, Pandey BN, Vatsa RK (2013) Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf, B 108:158–168

    Google Scholar 

  100. Maity D, Ding JUN, Xue JM (2008) Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct Mater Lett 01:189–193

    Google Scholar 

  101. Ningthoujam RS, Gautam A, Padma N (2017) Oleylamine as reducing agent in syntheses of magic-size clusters and monodisperse quantum dots: optical and photoconductivity studies. Phys Chem Chem Phys 19:2294–2303

    Google Scholar 

  102. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Google Scholar 

  103. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Google Scholar 

  104. Sharma KS, Ningthoujam RS, Dubey AK, Chattopadhyay A, Phapale S, Juluri RR, Mukherjee S, Tewari R, Shetake NG, Pandey BN, Vatsa RK (2018) Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. Sci Rep 8:14766

    Google Scholar 

  105. Lassenberger A, Grünewald TA, van Oostrum PDJ, Rennhofer H, Amenitsch H, Zirbs R et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: Elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29:4511–4522

    Google Scholar 

  106. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX et al (2004) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Google Scholar 

  107. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Google Scholar 

  108. Piquer C, Laguna-Marco MA, Roca AG, Boada R, Guglieri C, Chaboy J (2014) Fe K-Edge X-ray absorption spectroscopy study of nanosized nominal magnetite. J Phys Chem C 118:1332–1346

    Google Scholar 

  109. Sharma S, Gajbhiye NS, Ningthoujam RS (2010) Synthesis and self-assembly of monodisperse CoxNi100-x (x = 50, 80) colloidal nanoparticles by homogenous nucleation. J. Colloids & Interface Science 351:323

    Google Scholar 

  110. Gajbhiye NS, Sharma S, Ningthoujam RS (2008) Synthesis of self-assembled monodisperse 3 nm FePd nanoparticles: phase transition, magnetic study and surface effect. J Appl Phys 104:123906

    Google Scholar 

  111. Sharma S, Ningthoujam RS, Gajbhiye NS (2013) Spin-glass-like behavior of surfactant capped Co50Ni50 nanoparticles. Chem Phys Lett 558:48–52

    Google Scholar 

  112. Sharma S, Gajbhiye NS, Ningthoujam RS (2010) Effect of annealing on magnetic properties of FePd and FePdPt nanoparticles. AIP Conference Proceeding 1313:125

    Google Scholar 

  113. Soni AK, Joshi R, Singh BP, Kumar NN, Ningthoujam RS (2019) Near-infrared- and magnetic-field-responsive NaYF4:Er3+/Yb3+@SiO2@AuNP@Fe3O4 nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption. ACS Appl. Nano Mater. 2:7350–7361

    Google Scholar 

  114. Soni AK, Yadav KK, Singh BP, Joshi R, Chakraborty S, Chakravarty R, Nagaraja NK, Singh DK, Kain V, Dash A, Ningthoujam RS (2020) Smart YPO4:Er-Yb nanophosphor for optical heating, hyperthermia, security ink, cancer endoradiotherapy and uranyl recovery. ACS Appl Nano Mater

    Google Scholar 

  115. Joshi R, Perala RS, Shelar SB, Ballal A, Singh BP, Ningthoujam RS (2020) Super bright red upconversion in NaErF4:0.5%Tm@NaYF4:20%Yb nanoparticles for anti-counterfeit and bio-imaging applications. ACS Appl Mater Interf

    Google Scholar 

  116. Motshekga SC, Pillai SK, Ray SS, Jalama K, Krause RWM (2012) Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. J Nanomater 691503

    Google Scholar 

  117. Aivazoglou E, Metaxa E, Hristoforou E (2017) Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment. AIP Adv 8:048201

    Google Scholar 

  118. Hu H, Yang H, Huang P, Cui D, Peng Y, Zhang J et al (2010) Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Chem Commun 46:3866–3868

    Google Scholar 

  119. Komarneni S, Hu W, Noh YD, Van Orden A, Feng S, Wei C et al (2012) Magnetite syntheses from room temperature to 150°C with and without microwaves. Ceram Int 38:2563–2568

    Google Scholar 

  120. Bhavesh R, Lechuga VA, Ruiz CJ, Herranz F (2015) T1 -MRI fluorescent iron oxide nanoparticles by microwave assisted synthesis. Nanomaterials 5:1880–1890

    Google Scholar 

  121. Zhu X, Hitchcock AP, Bazylinski DA, Denes P, Joseph J, Lins U et al (2016) Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography. Proc Natl Acad Sci 113:E8219

    Google Scholar 

  122. Patra CR, Mukherjee S, Kotcherlakota R (2014) Biosynthesized silver nanoparticles: a step forward for cancer theranostics? Nanomedicine 9:1445–1448

    Google Scholar 

  123. Lim EK, Kim T, Paik S, Haam S, Huh Y-M, Lee K (2015) Nanomaterials for theranostics: Recent advances and future challenges. Chem Rev 115:327–394

    Google Scholar 

  124. Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 7:3207–3227

    Google Scholar 

  125. Gaddam RR, Mukherjee S, Punugupati N, Vasudevan D, Patra CR, Narayan R et al (2017) Facile synthesis of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications. Mater Sci Eng, C 73:643–652

    Google Scholar 

  126. Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C (2019) Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics 11:22

    Google Scholar 

  127. Mukherjee A, Waters A, Babic I, Nurmemmedov E, Glassy M, Kesari S et al (2018) Antibody drug conjugates: Progress, pitfalls, and promises. Hum Antibodies 27:1–10

    Google Scholar 

  128. Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935–4978

    Google Scholar 

  129. Vargas G, Cypriano J, Correa T, Leão P, Bazylinski DA, Abreu F (2018) Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-review. Molecules 23:2438

    Google Scholar 

  130. Zhou W, He W, Zhong S, Wang Y, Zhao H, Li Z et al (2009) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321:1025–1028

    Google Scholar 

  131. Kaushik S, Thomas J, Panwar V, Ali H, Chopra V, Sharma A, Tomar R, Ghosh D (2020) In situ biosynthesized superparamagnetic iron oxide nanoparticles (SPIONS) induce efficient hyperthermia in cancer cells. ACS Appl Bio Mater 3:779–788

    Google Scholar 

  132. Jadhav NV, Prasad AI, Kumar A, Mishra R, Dhara S, Babu KR, Prajapat CL, Misra NL, Ningthoujam RS, Pandey BN, Vatsa RK (2013) Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf Biointerf 108:158–168

    Google Scholar 

  133. Barick KC, Sharma A, Shetake NG, Ningthoujam RS, Vatsa RK, Babu PD, Pandey BN, Hassan PA (2015) Covalent bridging of surface functionalized Fe3O4 and YPO4: Eu nanostructures for simultaneous imaging and therapy. Dalton Trans 44:14686–14696

    Google Scholar 

  134. Bhattacharya S, Roychowdhury A, Tiwari V, Prasad AI, Ningthoujam RS, Patel A, Das D, Nayar S (2015) Effect of biomimetic templates on the magneto-structural properties of Fe3O4 nanoparticles. RSC Adv 5:13777–13786

    Google Scholar 

  135. Nikam DS,Jadhav SV, Khot VM, Ningthoujam RS, Hong CK, Mali SS, Pawar SH (2014) Colloidal stability of polyethylene glycol functionalized Co0.5Zn0.5Fe2O4 nanoparticles: effect of pH, sample and salt concentration for hyperthermia application. RSC Adv 4:12662

    Google Scholar 

  136. Shete PB, Patil RM, Thorat ND, Prasad A, Ningthoujam RS, Ghosh SJ, Pawar SH (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157

    Google Scholar 

  137. Khot VM, Salunkhe AB, Thorat ND, Ningthoujam RS, Pawar SH (2013) Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans 42:1249–1258

    Google Scholar 

  138. Parchur AK, Kaurav N, Ansari AA, Prasad AI, Ningthoujam RS, Rai SB (2013) CaMoO4:Tb@Fe3O4 hybrid nanoparticles for luminescence and hyperthermia applications. AIP Conf Proc 1512:184

    Google Scholar 

  139. Mallick A, Mahapatra AS, Mitra A, Greneche JM, Ningthoujam RS, Chakrabarti PK (2018) Magnetic properties and bio-medical applications in hyperthermia of lithium zinc ferrite nanoparticles integrated with reduced graphene oxide. J Appl Phys 123:055103

    Google Scholar 

  140. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Google Scholar 

  141. Rajan SA, Sharma M, Sahu NK (2020) Water-to-PEG variation: Morphology and hyperthermic behaviour of iron oxide. J Supercond Novel Magn 33:1603–1609

    Google Scholar 

  142. Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW et al (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials (Basel) 8:810

    Google Scholar 

  143. Muthiah M, Park I K, Cho C (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31:1224-1236

    Google Scholar 

  144. Rajan A, Sharma M, Sahu NK (2020) Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia. Sci Rep 10:15045

    Google Scholar 

  145. Rajan A, Sahu NK (2020) Inductive calorimetric assessment of iron oxide nano-octahedrons for magnetic fluid hyperthermia. Colloids Surf Physicochem Eng Aspects 603:125210Muthiah, M.; Park, I. K.; Cho, C. Surface Modification of Iron Oxide Nanoparticles by Biocompatible Polymers for Tissue Imaging and Targeting. Biotechnology Advances 2013.

    Google Scholar 

  146. Wang Z, Choi F, Acosta E (2017) Effect of surfactants on zero-valent iron nanoparticles (NZVI) reactivity. J Surfactants Detergents 20

    Google Scholar 

  147. Chakraborty T, Chakraborty I, Ghosh S (2006) Sodium carboxymethylcellulose−CTAB interaction: A detailed thermodynamic study of polymer−surfactant interaction with opposite charges. Langmuir 22:9905–9913

    Google Scholar 

  148. Reverdatto S, Burz DS, Shekhtman A (2015) Peptide aptamers: development and applications. Curr Top Med Chem 15:1082–1101

    Google Scholar 

  149. Zuo B, Li W, Wu X, Wang S, Deng Q, Huang M (2020) Recent advances in the synthesis, surface modifications and applications of core-shell magnetic mesoporous silica nanospheres. Chem Asian J 15:1248–1265

    Google Scholar 

  150. Nassireslami E, Ajdarzade M (2018) Gold coated superparamagnetic iron oxide nanoparticles as effective nanoparticles to eradicate breast cancer cells via photothermal therapy. Adv Pharm Bull 8:201–209

    Google Scholar 

  151. Barick K, Hassan PA (2011) Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interface Sci 369:96–102

    Google Scholar 

  152. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZA et al (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548

    Google Scholar 

  153. Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V et al (2017) Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials (Basel) 7:243

    Google Scholar 

  154. Schmid G, Klein N, Korste L, Kreibig U, Schönauer D (1988) Large transition metal clusters—VI. Ligand exchange reactions on Au55(PPh3)12Cl6—the formation of a water soluble Au55 cluster. Polyhedron 7:605–608

    Google Scholar 

  155. Yu WW, Chang E, Sayes CM, Drezek R, Colvin VL (2006) Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17:4483–4487

    Google Scholar 

  156. Mao Z, Guo J, Bai SNTL, Xia H, Huang Y et al (2009) Hydrogen-bond-selective phase transfer of nanoparticles across liquid/gel interfaces. Angew Chem Int Ed 48:4953–4956

    Google Scholar 

  157. Hatakeyama M, Kishi H, Kita Y, Imai K, Nishio K, Karasawa S et al (2011) A two-step ligand exchange reaction generates highly water-dispersed magnetic nanoparticles for biomedical applications. J Mater Chem 21:5959–5966

    Google Scholar 

  158. Hou Z, Ren M, Wang K, Yang Y, Xu J, Zhu J (2020) Deformable block copolymer microparticles by controllable localization of pH-responsive nanoparticles. Macromolecules 53:473–481

    Google Scholar 

  159. DeCrozals G, Bonnet R, Farre C, Chaix C (2016) Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today 11:435–463

    Google Scholar 

  160. Joshi R, Perala R, Srivastava M, Singh BP, Ningthoujam R (2019) Heat generation from magnetic fluids under alternating current magnetic field or induction coil for hyperthermia-based cancer therapy: Basic principle. Journal of Radiation and Cancer Research 10:156–164

    Google Scholar 

  161. Rajan A, Sahu NK (2020) Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J Nanopart Res 22:319

    Google Scholar 

  162. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Google Scholar 

  163. Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng BME-31:70–75

    Google Scholar 

  164. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B et al (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60

    Google Scholar 

  165. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Google Scholar 

  166. Dennis CL, Ivkov R (2013) Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperth 29:715–729

    Google Scholar 

  167. Sahu NK, Gupta J, Bahadur D (2015) PEGylated FePt–Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans 44:9103–9113

    Google Scholar 

  168. Kumar S, Daverey A, Sahu NK, Bahadur D (2013) In vitro evaluation of PEGylated mesoporous MgFe2O4 magnetic nanoassemblies (MMNs) for chemo-thermal therapy. Journal of Materials Chemistry B 1:3652–3660

    Google Scholar 

  169. Kotoulas A, Dendrinou-Samara C, Sarafidis C, Kehagias T, Arvanitidis J, Vourlias G et al (2017) Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency. J Nanopart Res 19:399

    Google Scholar 

  170. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915

    Google Scholar 

  171. Mazario E, Menéndez N, Herrasti P, Cañete M, Connord V, Carrey J (2013) Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J Phys Chem C 117:11405–11411

    Google Scholar 

  172. Stergar J, Ban I, Maver U (2019) The potential biomedical application of NiCu magnetic nanoparticles. Magnetochemistry 5:66

    Google Scholar 

  173. Ma X, Wang Y, Liu XL, Ma H, Li G, Li Y et al (2019) Fe3O4–Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. Nanoscale Horizons 4:1450–1459

    Google Scholar 

  174. Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD (2017) Recent advances in carbon based nanosystems for cancer theranostics. Biomaterials Science 5:901–952

    Google Scholar 

  175. Meneses-Brassea BP, Borrego EA, Blazer DS, Sanad MF, Pourmiri S, Gutierrez DA et al (2020) Ni-Cu nanoparticles and their feasibility for magnetic hyperthermia. Nanomaterials (Basel) 10:1988

    Google Scholar 

  176. Wang X, Pan F, Xiang Z, Jia W, Lu W (2020) Magnetic Fe3O4@PVP nanotubes with high heating efficiency for MRI-guided magnetic hyperthermia applications. Mater Lett 262:127187

    Google Scholar 

  177. Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422

    Google Scholar 

  178. Xie L, Jin W, Zuo X, Ji S, Nan W, Chen H et al (2020) Construction of small-sized superparamagnetic Janus nanoparticles and their application in cancer combined chemotherapy and magnetic hyperthermia. Biomaterials Science 8:1431–1441

    Google Scholar 

  179. Hedayatnasab Z, Dabbagh A, Abnisa F, Wan Daud WMA (2020) Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Euro Polym J 133:109789

    Google Scholar 

  180. Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21:13388

    Google Scholar 

  181. Shetake NG, Kumar A, Gaikwad S, Ray P, Desai S, Ningthoujam RS, Vatsa RK, Pandey BN (2015) Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation. Int J Hyperthermia 31:909–9019

    Google Scholar 

  182. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Google Scholar 

  183. Gneveckow U, Jordan A, Scholz R, Brüß V, Waldöfner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P (2004) Description and characterization of the novel hyperthermia- and thermoablationsystem MFH ® 300F for clinical magnetic fluid hyperthermia. Med Phys 31:1444

    Google Scholar 

  184. Müller S (2009) Magnetic fluid hyperthermia therapy for malignantbrain tumors—an ethical discussion, nanomedicine: Nanotechnology. Biology, and Medicine 5:387–393

    Google Scholar 

  185. Singh LP, Jadhav NV, Sharma S, Pandey BN, Srivastava SK, Ningthoujam RS (2015) Hybrid nanomaterials YVO4:Eu/Fe3O4 for optical imaging and hyperthermia in cancer cells. J. Mater. Chem. C 3:1965–1975

    Google Scholar 

  186. Leung JP, Wu S, Chou KC, Signorell R (2013) Investigation of sub-100 nm gold nanoparticles for laser-induced thermotherapy of cancer. Nanomaterials (Basel) 3:86–106

    Google Scholar 

  187. Hubenthal F, Hendrich C, Träger F (2010) Damping of the localized surface plasmon polariton resonance of gold nanoparticles. Appl Phys B 100:225–230

    Google Scholar 

  188. Shanmugam V, Selvakumar S, Yeh CS (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43:6254–6287

    Google Scholar 

  189. Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL et al (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530

    Google Scholar 

  190. Khan A, Sahu NK (2020) 6 - Remotely stimulated nanomedicine for breast cancer therapy. In: Thorat ND, Bauer J (eds) Nanomedicines for breast cancer theranostics. Elsevier, pp 107–30

    Google Scholar 

  191. Soni AK, Joshi R, Singh BP, Kumar NN, Ningthoujam RS (2019) Near-infrared- and magnetic-field-responsive NaYF4:Er3+/Yb3+@SiO2@AuNP@Fe3O4 nanocomposites for hyperthermia applications induced by fluorescence resonance energy transfer and surface plasmon absorption. ACS Appl Nano Mater 2:7350–7361.5678

    Google Scholar 

  192. Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG et al (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2:55ra79–55ra79

    Google Scholar 

  193. Hong EJ, Kim YS, Choi DG, Shim MS (2018) Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles. J Ind Eng Chem 67:429–436

    Google Scholar 

  194. Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X et al (2013) Comparison study of gold nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment. ACS Nano 7:2068–2077

    Google Scholar 

  195. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett 11:4029–4036

    Google Scholar 

  196. Phan TTV, Bui NQ, Moorthy MS, Lee KD, Oh J (2017) Synthesis and In vitro performance of polypyrrole-coated iron-platinum nanoparticles for photothermal therapy and photoacoustic imaging. Nanoscale Res Lett 12:570

    Google Scholar 

  197. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Google Scholar 

  198. Espinosa A, Di CR, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10:2436–2446

    Google Scholar 

  199. Jędrzak A, Grześkowiak BF, Golba K, Coy E, Synoradzki K, Jurga S et al (2020) Magnetite nanoparticles and spheres for chemo- and photothermal therapy of hepatocellular carcinoma in vitro. Int J Nanomedicine 15:7923–7936

    Google Scholar 

  200. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 201:16–71

    Google Scholar 

  201. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3:133–149

    Google Scholar 

  202. Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L et al (2016) Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Funct Mater 26:3818–3836

    Google Scholar 

  203. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP et al (1998) Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci 95:4607

    Google Scholar 

  204. de la Puente P, Azab AK (2017) Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur J Haematol 98:529–541

    Google Scholar 

  205. Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Google Scholar 

  206. Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW et al (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    Google Scholar 

  207. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Google Scholar 

  208. Gref R, Minamitake Y, Peracchia MT, Trubetskoy VS, Torchilin VP, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science (New York, NY) 263:1600–1603

    Google Scholar 

  209. Kakwere H, Leal MP, Materia ME, Curcio A, Guardia P, Niculaes D et al (2015) Functionalization of strongly interacting magnetic nanocubes with (Thermo) responsive coating and their application in hyperthermia and heat-triggered drug delivery. ACS Appl Mater Interfaces 7:10132–10145

    Google Scholar 

  210. Zhang C, Mo Z, Teng G, Wang B, Guo R, Zhang P (2013) Superparamagnetic functional C@Fe3O4 nanoflowers: development and application in acetaminophen delivery. Journal of Materials Chemistry B 1:5908–5915

    Google Scholar 

  211. Cheng K, Peng S, Xu C, Sun S (2009) Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131:10637–10644

    Google Scholar 

  212. MR, SV, Ramirez JT, AV, LL (2018) Biofunctionalized MnFe2O4@Au core–shell nanoparticles for pH-responsive drug delivery and hyperthermal agent for cancer therapy. Artif Cells, Nanomed Biotechnol 46:S993-S1003

    Google Scholar 

  213. Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel) 12:617

    Google Scholar 

  214. Zhou Z, Zhu X, Wu D, Chen Q, Huang D, Sun C et al (2015) Anisotropic shaped iron oxide nanostructures: controlled synthesis and proton relaxation shortening effects. Chem Mater 27:3505–3515

    Google Scholar 

  215. Orza A, Wu H, Xu Y, Lu Q, Mao H (2017) One-step facile synthesis of highly magnetic and surface functionalized iron oxide nanorods for biomarker-targeted applications. ACS Appl Mater Interfaces 9:20719–20727

    Google Scholar 

  216. Lee JH, Huh YM, Jun YW, Seo J-W, Jang J-T, Song HT et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 3:9–95

    Google Scholar 

  217. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785

    Google Scholar 

  218. Jang J-T, Nah H, Lee J-H, Moon SH, Dr MG, Prof J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem 121:1260–1264

    Google Scholar 

  219. Bao Y, Sherwood JA, Sun Z (2018) Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J Mater Chem C 6:1280–1290

    Google Scholar 

  220. Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS et al (2015) Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Funct Mater 25:490–494

    Google Scholar 

  221. Zhou Z, Zhao Z, Zhang H, Wang Z, Chen X, Wang R et al (2014) Interplay between longitudinal and transverse contrasts in Fe3O4 nanoplates with (111) exposed surfaces. ACS Nano 8:7976–7985

    Google Scholar 

  222. Forte E, Fiorenza D, Torino E, Costagliola di Polidoro A, Cavaliere C, Netti PA et al (2019) Radiolabeled PET/MRI nanoparticles for tumor imaging. J Clin Med 9:89

    Google Scholar 

  223. Na HB, Lee IS, Seo H, Park YI, Lee JH, Kim S-W et al (2007) Versatile PEG-derivatized phosphine oxide ligands for water-dispersible metal oxide nanocrystals. Chem Commun 5167–5169

    Google Scholar 

  224. Kircher M, Mahmood U, King R, Weissleder R, Josephson L (2004) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    Google Scholar 

  225. Lee J-H, Jun Y-W, Yeon S-I, Shin J-S, Cheon J (2006) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45:8160–8162

    Google Scholar 

  226. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Google Scholar 

  227. Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte AC (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrAC, Trends Anal Chem 47:27–36

    Google Scholar 

  228. Xu Y, Wang E (2012) Electrochemical biosensors based on magnetic micro/nano particles. Electrochim Acta 84:62–73

    Google Scholar 

  229. Aguilar-Arteaga K, Rodriguez JA, Barrado E (2010) Magnetic solids in analytical chemistry: A review. Anal Chim Acta 674:157–165

    Google Scholar 

  230. Duarte K, Justino CIL, Freitas AC, Duarte AC, Rocha-Santos TAP (2014) Direct-reading methods for analysis of volatile organic compounds and nanoparticles in workplace air. TrAC, Trends Anal Chem 53:21–32

    Google Scholar 

  231. Chen D, Deng J, Liang J, Xie J, Hu C, Huang K (2013) A core–shell molecularly imprinted polymer grafted onto a magnetic glassy carbon electrode as a selective sensor for the determination of metronidazole. Sens Actuators, B Chem 183:594–600

    Google Scholar 

  232. Wang X, You Z, Sha H, Sun Z, Sun W (2014) Electrochemical myoglobin biosensor based on carbon ionic liquid electrode modified with Fe3O4@SiO2 microsphere. J Solid State Electrochem 18:207–213

    Google Scholar 

  233. Jiang J, Lin X, Ding D, Diao G (2018) Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@β-CD nanocomposites. Biosens Bioelectron 114:37–43

    Google Scholar 

  234. Hu Y, Zhang Z, Zhang H, Luo L, Yao S (2012) Selective and sensitive molecularly imprinted sol–gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au–multi-walled carbon nanotubes–chitosan. J Solid State Electrochem 16:857–867

    Google Scholar 

  235. Beitollahi H, Nejad FG, Shakeri S (2017) GO/Fe3O4@SiO2 core–shell nanocomposite-modified graphite screen-printed electrode for sensitive and selective electrochemical sensing of dopamine and uric acid. Anal Methods 9:5541–5549

    Google Scholar 

  236. Arvand M, Hassannezhad M (2014) Magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Mater Sci Eng, C 36:160–167

    Google Scholar 

  237. Saljooqi A, Shamspur T, Mostafavi A (2020) Fe3O4@SiO2-PANI-Au nanocomposite prepared for electrochemical determination of quercetin in food samples and biological fluids. Electroanalysis 32:581–587

    Google Scholar 

  238. Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors (Basel, Switzerland) 10:625–638

    Google Scholar 

  239. Fu X-H (2008) Magnetic-controlled non-competitive enzyme-linked voltammetric immunoassay for carcinoembryonic antigen. Biochem Eng J 39:267–275

    Google Scholar 

  240. Pita M, Tam TK, Minko S, Katz E (2009) Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes. ACS Appl Mater Interfaces 1:1166–1168

    Google Scholar 

  241. Justino CIL, Rocha-Santos TA, Duarte AC, Rocha-Santos TA (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC, Trends Anal Chem 29:1172–1183

    Google Scholar 

  242. Elosúa C, Vidondo I, Arregui FJ, Bariain C, Luquin A, Laguna M et al (2013) Lossy mode resonance optical fiber sensor to detect organic vapors. Sens Actuators, B Chem 187:65–71

    Google Scholar 

  243. Silva LIB, Ferreira FDP, Freitas AC, Rocha-Santos TAP, Duarte AC (2010) Optical fibre-based micro-analyser for indirect measurements of volatile amines levels in fish. Food Chem 123:806–813

    Google Scholar 

  244. Iranifam M (2013) Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. TrAC, Trends Anal Chem 51:51–70

    Google Scholar 

  245. Li S, Wu Q, Ma P, Zhang Y, Song D, Wang X et al (2017) A sensitive SPR biosensor based on hollow gold nanospheres and improved sandwich assay with PDA-Ag@Fe3O4 /rGO. Talanta 180:156–161

    Google Scholar 

  246. Chen H, Qi F, Zhou H, Jia S, Gao Y, Koh K et al (2015) Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection. Sens Actuators, B Chem 212:505–511

    Google Scholar 

  247. Zhou J, Gan N, Li T, Zhou H, Li X, Cao Y et al (2013) Ultratrace detection of C-reactive protein by a piezoelectric immunosensor based on Fe3O4@SiO2 magnetic capture nanoprobes and HRP-antibody co-immobilized nano gold as signal tags. Sens Actuators B Chem 178:494–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niroj Kumar Sahu or Raghumani Singh Ningthoujam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajan, A., Chandunika, R.K., Raju, F., Joshi, R., Sahu, N.K., Ningthoujam, R.S. (2022). Synthesis and Processing of Magnetic-Based Nanomaterials for Biomedical Applications. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1803-1_16

Download citation

Publish with us

Policies and ethics