Skip to main content

Water Absorption and Swelling Behaviour of Wood Plastic Composites

  • Chapter
  • First Online:
Wood Polymer Composites

Abstract

Wood polymer composite (WPC) is an environmentally friendly and sustainable material which has been exploited in the filed such as building and construction marine, packaging, house wares, aerospace and automotive industry. In recent years, there is a rapid growth in the usage of WPC as it possesses low maintenance cost. The properties of WPC depend on the interaction between wood and polymer. WPC has characteristic water uptake and swelling properties. A knowledge of water absorption and swelling behaviour property of WPC is essential to tune the WPC for different application. Hence, in this chapter we give a brief outlook about the water absorption and swelling behaviour of wood plastic composites. The effect of processing method, fiber content, orientation, matrix type, wood content, coupling agent, crosslinking, immersion time and temperature on the water absorption and swelling of WPC is briefly described. This chapter also discuss different swelling test of wood polymer composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary KB, Pang S, Staiger MP (2008) Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust. Chem Eng J 142(2):190–198. https://doi.org/10.1016/j.cej.2007.11.024

    Article  CAS  Google Scholar 

  • Aref I, Nasser R, Ali I, Al-Mefarrej H, Al-Zahrani S (2013) Effects of aqueous extraction on the performance and properties of polypropylene/wood composites from Phoenix dactylifera and Acacia tortilis wood. J Reinf Plast Compos 32(7):476–489. https://doi.org/10.1177/0731684412454462

    Article  CAS  Google Scholar 

  • Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375. https://doi.org/10.1016/j.carbpol.2013.11.067

    Article  CAS  Google Scholar 

  • Bak M, Németh R (2012) Changes in swelling properties and moisture uptake rate of oil-heat-treated poplar (Populus× euramericana cv. Pannonia) wood. BioResources 7(7):5128–5137

    Google Scholar 

  • Barkas WW (1942) Wood water relationships—VII. Swelling pressure and sorption hysteresis in gels. Trans. Faraday Soc. 38(0):194–209. https://doi.org/10.1039/tf9423800194

  • Barkas WW (1949) The swelling of wood under stress

    Google Scholar 

  • Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5):539–546

    Article  CAS  Google Scholar 

  • Bismarck A, Baltazar-Y-Jimenez A, Sarikakis K (2006) Green composites as panacea? socio-economic aspects of green materials. Environ Dev Sustain 8(3):445–463. https://doi.org/10.1007/s10668-005-8506-5

    Article  Google Scholar 

  • Borysiak S (2013) Fundamental studies on lignocellulose/polypropylene composites: effects of wood treatment on the transcrystalline morphology and mechanical properties. J Appl Polym Sci 127(2):1309–1322. https://doi.org/10.1002/app.37651

    Article  CAS  Google Scholar 

  • Butylina S, Martikka O, Kärki T (2010) Comparison of water absorption and mechanical properties of wood–plastic composites made from polypropylene and polylactic acid. Wood Mat Sci Eng 5(3–4):220–228. https://doi.org/10.1080/17480272.2010.532233

    Article  CAS  Google Scholar 

  • Catto AL, Montagna LS, Almeida SH, Silveira RMB, Santana RMC (2016) Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. Int Biodeterior Biodegradation 109:11–22. https://doi.org/10.1016/j.ibiod.2015.12.026

    Article  CAS  Google Scholar 

  • Čermák P, Rautkari L, Horáček P, Saake B, Rademacher P, Sablík P (2015) Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles. BioResources 10(2):3242–3253

    Article  Google Scholar 

  • Chen Y, Guo X, Peng Y, Cao J (2019) Water absorption and mold susceptibility of wood flour/polypropylene composites modified with silane-wax emulsions. Polym Compos 40(1):141–148. https://doi.org/10.1002/pc.24616

    Article  CAS  Google Scholar 

  • Choong ET, Achmadi SS (2007) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23(2):185–196

    Google Scholar 

  • Council of Scientific & Industrial Research (India). Publications & Information Directorate., & Indian National Science Academy (1994). Indian journal of engineering and materials sciences. In New Delhi: Publications & Information Directorate, CSIR in association with Indian National Science Academy

    Google Scholar 

  • Dányádi L, Móczó J, Pukánszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos A Appl Sci Manuf 41(2):199–206. https://doi.org/10.1016/j.compositesa.2009.10.008

    Article  CAS  Google Scholar 

  • Deka M, Saikia C (2000) Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Biores Technol 73(2):179–181

    Article  CAS  Google Scholar 

  • DeVallance DB, Oporto GS, Quigley P (2016) Investigation of hardwood biochar as a replacement for wood flour in wood–polypropylene composites. J Elastomers Plast 48(6):510–522. https://doi.org/10.1177/0095244315589655

    Article  CAS  Google Scholar 

  • Ding T, Gu L, Li T (2011) Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber. Eur J Wood Wood Prod 69(1):121–126

    Article  Google Scholar 

  • Donath S, Militz H, Mai C (2006) Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60(1):40–46. https://doi.org/10.1515/hf.2006.008

    Article  CAS  Google Scholar 

  • Elvy SB, Dennis GR, Ng L-T (1995) Effects of coupling agent on the physical properties of wood-polymer composites. J Mater Process Technol 48(1–4):365–371

    Article  Google Scholar 

  • Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos A Appl Sci Manuf 35(11):1267–1276. https://doi.org/10.1016/j.compositesa.2004.04.004

    Article  CAS  Google Scholar 

  • Evans P, Urban K, Chowdhury M (2008) Surface checking of wood is increased by photodegradation caused by ultraviolet and visible light. Wood Sci Technol 42(3):251–265

    Article  CAS  Google Scholar 

  • Evans PD (2007) A note on assessing the deterioration of thin wood veneers during weathering. Wood Fiber Sci 20(4):487–492

    Google Scholar 

  • Feist WC (1979) Protection of wood surfaces with chromium trioxide, vol 339. Forest Products Laboratory, Forest Service, US Department of Agriculture

    Google Scholar 

  • Feist WC (1983) Weathering and protection of wood

    Google Scholar 

  • Gaff M, Gašparík M (2013) Shrinkage and stability of thermo-mechanically modified aspen wood. BioResources 8(1):1136–1146

    Article  CAS  Google Scholar 

  • Gramlich WM, Gardner DJ, Neivandt DJ (2006) Surface treatments of wood–plastic composites (WPCs) to improve adhesion. J Adhes Sci Technol 20(16):1873–1887. https://doi.org/10.1163/156856106779116623

    Article  CAS  Google Scholar 

  • Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH (2010) Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Compos A Appl Sci Manuf 41(10):1491–1497. https://doi.org/10.1016/j.compositesa.2010.06.011

    Article  CAS  Google Scholar 

  • Harper D, Wolcott M (2004) Interaction between coupling agent and lubricants in wood–polypropylene composites. Compos A Appl Sci Manuf 35(3):385–394. https://doi.org/10.1016/j.compositesa.2003.09.018

    Article  CAS  Google Scholar 

  • Hernández RE, Bizoň M (2007) Changes in shrinkage and tangential compression strength of sugar maple below and above the fiber saturation point. Wood Fiber Sci 26(3):360–369

    Google Scholar 

  • Hill CA (2007) Wood modification: chemical, thermal and other processes, vol 5. Wiley, Hoboken

    Google Scholar 

  • Hill CA (2011) Wood modification: an update. BioResources 6(2):918–919

    CAS  Google Scholar 

  • Hill CA, Farahani MM, Hale MD (2004) The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung 58(3):316–325

    Article  CAS  Google Scholar 

  • Hosoya T, Kawamoto H, Saka S (2007) Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrol 80(1):118–125. https://doi.org/10.1016/j.jaap.2007.01.006

    Article  CAS  Google Scholar 

  • Hosseinaei O, Wang S, Taylor AM, Kim J-W (2012) Effect of hemicellulose extraction on water absorption and mold susceptibility of wood–plastic composites. Int Biodeterior Biodegradation 71:29–35. https://doi.org/10.1016/j.ibiod.2011.12.015

    Article  CAS  Google Scholar 

  • Indian journal of materials science (2013). In (pp. 1 online resource). New York, NY: Hindawi Pub. Corp

    Google Scholar 

  • Islam MS, Hamdan S, Hassan A, Talib ZA, Sobuz HR (2013) The chemical modification of tropical wood polymer composites. J Compos Mater 48(7):783–789. https://doi.org/10.1177/0021998313477894

    Article  CAS  Google Scholar 

  • Jakes JE, Plaza N, Stone DS, Hunt CG, Glass SV, Zelinka SL (2013). Mechanism of transport through wood cell wall polymers. J Forest Prod Ind 2(6):10–13

    Google Scholar 

  • Jankowska A, Drożdżek M, Sarnowski P, Horodeński J (2017) Effect of extractives on the equilibrium moisture content and shrinkage of selected tropical wood species. BioResources 12(1):597–607

    CAS  Google Scholar 

  • Jebrane M, Sèbe G, Cullis I, Evans PD (2009) Photostabilisation of wood using aromatic vinyl esters. Polym Degrad Stab 94(2):151–157

    Article  CAS  Google Scholar 

  • Kazemi Najafi S, Kiaefar A, Tajvidi M (2008) Effect of bark flour content on the hygroscopic characteristics of wood–polypropylene composites. J Appl Polym Sci 110(5):3116–3120

    Article  Google Scholar 

  • Lande S, Westin M, Schneider M (2004) Properties of furfurylated wood. Scand J For Res 19(sup5):22–30

    Article  Google Scholar 

  • Lanvermann C, Wittel FK, Niemz P (2014) Full-field moisture induced deformation in Norway spruce: intra-ring variation of transverse swelling. Eur J Wood Wood Prod 72(1):43–52

    Article  Google Scholar 

  • Li TQ, Wolcott MP (2004) Rheology of HDPE–wood composites. I. Steady state shear and extensional flow. Compos Part A Appl Sci Manuf 35(3):303–311 https://doi.org/10.1016/j.compositesa.2003.09.009

  • Li Y, Wu Q, Li J, Liu Y, Wang X-M, Liu Z (2012). Improvement of dimensional stability of wood via combination treatment: swelling with maleic anhydride and grafting with glycidyl methacrylate and methyl methacrylate. Holzforschung 66(1) https://doi.org/10.1515/hf.2011.123

  • Liu JY, Simpson WT (1999) Two-stage moisture diffusion in wood with constant transport coefficients. Drying Technol 17(1–2):258–267. https://doi.org/10.1080/07373939908917528

    Article  Google Scholar 

  • Lukowsky D, Peek R, Rapp A (1997) Water-based silicones on wood. International Research Group on Wood Protection, IRG/Wp, 97-30144

    Google Scholar 

  • Ma E-N, Zhao G-J, Cao J-Z (2005) Hygroexpansion of wood during moisture adsorption and desorption processes. Forestr Stud China 7(2):43–46

    Article  CAS  Google Scholar 

  • Medupin R (2013) Mechanical properties of wood waste reinforced polymer matrix composites. Am Chem Sci J 3(4):507–513. https://doi.org/10.9734/acsj/2013/5637

    Article  CAS  Google Scholar 

  • Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Wolcott MP (2009) Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos A Appl Sci Manuf 40(1):80–85. https://doi.org/10.1016/j.compositesa.2008.10.004

    Article  CAS  Google Scholar 

  • Mishra S, Naik JB (1998) Absorption of water at ambient temperature and steam in wood-polymer composites prepared from agrowaste and polystyrene. J Appl Polym Sci 68(4):681–686. https://doi.org/10.1002/(sici)1097-4628(19980425)68:4<681::Aid-app20>3.0.Co;2-t

    Article  CAS  Google Scholar 

  • Mishra S, Naik JB, Patil YP (2004) Studies on swelling properties of wood/polymer composites based on agro-waste and novolac. Adv Polym Technol 23(1):46–50. https://doi.org/10.1002/adv.10073

    Article  CAS  Google Scholar 

  • Mitchell MR, Link RE, Zelinka SL, Glass SV (2010) Water vapor sorption isotherms for southern pine treated with several waterborne preservatives. J Test Eval 38(4). https://doi.org/10.1520/jte102696

  • Mrad H, Alix S, Migneault S, Koubaa A, Perré P (2018) Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement 115:197–203. https://doi.org/10.1016/j.measurement.2017.10.011

    Article  Google Scholar 

  • Murínová T, Daňková J, Mec P (2014). Utilization of wood modification for the purpose of moisture volume changes reduction. Paper presented at the Advanced Materials Research

    Google Scholar 

  • Naderi N, Hernandez RE (2007) Effect of re-wetting treatment on the dimensional changes of sugar maple wood. Wood Fiber Sci 29(4):340–344

    Google Scholar 

  • Najafi SK, Kiaefar A, Hamidina E, Tajvidi M (2016) Water absorption behavior of composites from sawdust and recycled plastics. J Reinf Plast Compos 26(3):341–348. https://doi.org/10.1177/0731684407072519

    Article  CAS  Google Scholar 

  • Noack D, Schwab E, Bartz A (1973) Characteristics for a judgment of the sorption and swelling behavior of wood. Wood Sci Technol 7(3):218–236

    Article  Google Scholar 

  • North Carolina State University. Department of Wood and Paper Science. Bioresources. In. Raleigh, N.C.: Dept. of Wood and Paper Science, College of Natural Resources

    Google Scholar 

  • Nourbakhsh A, Ashori A (2009) Preparation and properties of wood plastic composites made of recycled high-density polyethylene. J Compos Mater 43(8):877–883. https://doi.org/10.1177/0021998309103089

    Article  CAS  Google Scholar 

  • Oh Y-S, Sites LS, Sellers J, Nicholas DD (2000) Computerized dynamic swellometer evaluation of oriented strand products. Forest Prod J 50(3):35

    Google Scholar 

  • Ohmae K, Minato K, Norimoto M (2002) The analysis of dimensional changes due to chemical treatments and water soaking for hinoki (Chamaecyparis obtusa) wood. Holzforschung 56(1):98–102

    Article  CAS  Google Scholar 

  • Oksman K, Lindberg H, Holmgren A (1998) The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites. J Appl Polym Sci 69(1):201–209. https://doi.org/10.1002/(sici)1097-4628(19980705)69:1<201::Aid-app23>3.0.Co;2-0

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Sain M (2016) Studies on the water absorption properties of short hemp—glass fiber hybrid polypropylene composites. J Compos Mater 41(15):1871–1883. https://doi.org/10.1177/0021998307069900

    Article  CAS  Google Scholar 

  • Patil YP, Gajre B, Dusane D, Chavan S, Mishra S (2000) Effect of maleic anhydride treatment on steam and water absorption of wood polymer composites prepared from wheat straw, cane bagasse, and teak wood sawdust using Novolac as matrix. J Appl Polym Sci 77(13):2963–2967. https://doi.org/10.1002/1097-4628(20000923)77:13<2963::Aid-app20>3.0.Co;2-0

    Article  CAS  Google Scholar 

  • Pfriem A (2011). Alteration of water absorption coefficient of spruce (Picea abies (L.) Karst.) due to thermal modification. Drvna industrija: Znanstveni časopis za pitanja drvne tehnologije 62(4): 311–313

    Google Scholar 

  • Rafsanjani A, Derome D, Wittel FK, Carmeliet J (2012) Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. Compos Sci Technol 72(6):744–751

    Article  Google Scholar 

  • Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J R Soc Interface 11(95):20140126

    Article  Google Scholar 

  • Renner K, Kenyó C, Móczó J, Pukánszky B (2010) Micromechanical deformation processes in PP/wood composites: particle characteristics, adhesion, mechanisms. Compos A Appl Sci Manuf 41(11):1653–1661. https://doi.org/10.1016/j.compositesa.2010.08.001

    Article  CAS  Google Scholar 

  • Roussel C, Marchetti V, Lemor A, Wozniak E, Loubinoux B, Gérardin P (2001) Chemical modification of wood by polyglycerol/maleic anhydride treatment. Holzforschung 55(1):57–62. https://doi.org/10.1515/hf.2001.009

    Article  CAS  Google Scholar 

  • Rowell RM (2006) Chemical modification of wood: a short review. Wood Mat Sci Eng 1(1):29–33. https://doi.org/10.1080/17480270600670923

    Article  CAS  Google Scholar 

  • Rowell RM (2007) Chemical modification of wood. Handbook of engineering biopolymers, homopolymers, blends, and composites. Hanser Gardner Publications, Inc., Cincinnati, pp 673–691

    Google Scholar 

  • Rowell RM, Dickerson JP (2014) Acetylation of wood. In: Deterioration and protection of sustainable biomaterials pp 301–327. ACS Publications

    Google Scholar 

  • Rowell RM, Ellis WD (2007) Determination of dimensional stabilization of wood using the water-soak method. Wood Fiber Sci 10(2):104–111

    Google Scholar 

  • Rowell RM, Imamura Y, Kawai S, Norimoto M (2007) Dimensional stability, decay resistance, and mechanical properties of veneer-faced low-density particleboards made from acetylated wood. Wood Fiber Sci 21(1):67–79

    Google Scholar 

  • Salehian P, Karimi K, Zilouei H, Jeihanipour A (2013) Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106:484–489. https://doi.org/10.1016/j.fuel.2012.12.092

    Article  CAS  Google Scholar 

  • Sargent R (2019) Evaluating dimensional stability in solid wood: a review of current practice. J Wood Sci 65(1):1–11

    Article  CAS  Google Scholar 

  • Schmidt O (2006) Wood and tree fungi. Springer

    Google Scholar 

  • Šefc B, Trajković J, Hasan M, Katović D, Bischof Vukušić S, Frančić M (2009) Dimensional stability of wood modified by citric acid using different catalysts. Drvna Industrija: Znanstveni Časopis Za Pitanja Drvne Tehnologije 60(1):23–26

    Google Scholar 

  • Singh S, Mohanty A (2007) Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Compos Sci Technol 67(9):1753–1763. https://doi.org/10.1016/j.compscitech.2006.11.009

    Article  CAS  Google Scholar 

  • Sjoerdsma SD, Dalmolen J, Bleijenberg ACAM, Heikens D (1980) Dynamic mechanical properties of polystyrene/low density polyethylene blends. Polymer 21(12):1469–1474. https://doi.org/10.1016/0032-3861(80)90149-4

    Article  CAS  Google Scholar 

  • Skaar C (2012) Wood-water relations. Springer Science & Business Media

    Google Scholar 

  • Sliwa F, El Bounia N-E, Charrier F, Marin G, Malet F (2012) Mechanical and interfacial properties of wood and bio-based thermoplastic composite. Compos Sci Technol 72(14):1733–1740. https://doi.org/10.1016/j.compscitech.2012.07.002

    Article  CAS  Google Scholar 

  • Son J, Gardner DJ (2007) Dimensional stability measurements of thin wood veneers using the Wilhelmy plate technique. Wood Fiber Sci 36(1):98–106

    Google Scholar 

  • Stevens W (1963) The transverse shrinkage of wood. For Prod J 13:386–389

    Google Scholar 

  • Sudár A, Burgstaller C, Renner K, Móczó J, Pukánszky B (2014) Wood fiber reinforced multicomponent, multiphase PP composites: structure, properties, failure mechanism. Compos Sci Technol 103:106–112. https://doi.org/10.1016/j.compscitech.2014.08.018

    Article  CAS  Google Scholar 

  • Temiz A, Terziev N, Jacobsen B, Eikenes M (2006) Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. J Appl Polym Sci 102(5):4506–4513. https://doi.org/10.1002/app.24878

    Article  CAS  Google Scholar 

  • Thygesen LG, Tang Engelund E, Hoffmeyer P (2010) Water sorption in wood and modified wood at high values of relative humidity. Part I: Results for untreated, acetylated, and furfurylated Norway spruce. Holzforschung 64(3). https://doi.org/10.1515/hf.2010.044

  • Turku I, Keskisaari A, Kärki T, Puurtinen A, Marttila P (2017) Characterization of wood plastic composites manufactured from recycled plastic blends. Compos Struct 161:469–476. https://doi.org/10.1016/j.compstruct.2016.11.073

    Article  Google Scholar 

  • Vardai R, Lummerstorfer T, Pretschuh C, Jerabek M, Gahleitner M, Pukanszky B, Renner K (2019) Impact modification of PP/wood composites: a new approach using hybrid fibers. Express Polym Lett 13(3):223–234. https://doi.org/10.3144/expresspolymlett.2019.19

    Article  CAS  Google Scholar 

  • Virta J, Koponen S, Absetz I (2006) Modelling moisture distribution in wooden cladding board as a result of short-term single-sided water soaking. Build Environ 41(11):1593–1599

    Article  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264

    Article  CAS  Google Scholar 

  • Wei L, McDonald AG, Freitag C, Morrell JJ (2013) Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym Degrad Stab 98(7):1348–1361. https://doi.org/10.1016/j.polymdegradstab.2013.03.027

    Article  CAS  Google Scholar 

  • Williams RS (1999) Effect of water repellents on long-term durability of millwork treated with water-repellent preservatives. For Prod J 49(2):53

    Google Scholar 

  • Williams RS (2005) Weathering of wood. In Handbook of wood chemistry and wood composites, 7, 139–185

    Google Scholar 

  • Xu Y, Wu Q, Lei Y, Yao F, Zhang Q (2008) Natural fiber reinforced poly(vinyl chloride) composites: effect of fiber type and impact modifier. J Polym Environ 16(4):250–257. https://doi.org/10.1007/s10924-008-0113-8

    Article  CAS  Google Scholar 

  • Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S (2006) Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Compos Struct 72(4):429–437. https://doi.org/10.1016/j.compstruct.2005.01.013

    Article  Google Scholar 

  • Youngquist JA, Krzysik A, Rowell RM (2007) Dimensional stability of acetylated aspen flakeboard. Wood Fiber Sci 18(1):90–98

    Google Scholar 

  • Yousif B, El-Tayeb N (2007) Tribological evaluations of polyester composites considering three orientations of CSM glass fibres using BOR machine. Appl Compos Mater 14(2):105–116

    Article  CAS  Google Scholar 

  • Zelinka SL, Stone DS (2011) Corrosion of metals in wood: Comparing the results of a rapid test method with long-term exposure tests across six wood treatments. Corros Sci 53(5):1708–1714

    Article  CAS  Google Scholar 

  • Zhang J, Li Y, Xing D, Wang Q, Wang H, Koubaa A (2019) Reinforcement of continuous fibers for extruded wood-flour/HDPE composites: effects of fiber type and amount. Constr Build Mater 228:116718. https://doi.org/10.1016/j.conbuildmat.2019.116718

    Article  CAS  Google Scholar 

  • Zhang X, Yang H, Lin Z, Tan S (2011) Polypropylene hybrid composites filled by wood flour and short glass fiber: effect of compatibilizer on structure and properties. J Thermoplast Compos Mater 26(1):16–29. https://doi.org/10.1177/0892705711417030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support by the King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand and grant funded the Post-Doctoral scholarship Thailand (Grant No. KMUTNB-63-Post-03 to SR) and (Grant No. KMUTNB-BasicR-64-16).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radoor, S., Karayil, J., Shivanna, J.M., Siengchin, S. (2021). Water Absorption and Swelling Behaviour of Wood Plastic Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Kumar, M.H., Siengchin, S. (eds) Wood Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1606-8_10

Download citation

Publish with us

Policies and ethics