Skip to main content

Vision-Based Measurement of Leaf Dimensions and Area Using a Smartphone

  • Conference paper
  • First Online:
Intelligent Communication, Control and Devices

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1341))

  • 287 Accesses

Abstract

Many vision-based techniques have been proposed and handheld devices have been commercially available for leaf area measurement. However, they are not cost-effective nor simple enough for use. As an effort to tackle this problem, this study proposed an easy vision-based approach toward measuring the leaf dimensions and area using a smartphone, a cost-effective and available device. Acceptable measurement accuracies were achieved from experiments with different leaf shapes and sizes in terms of both error and error percentage. The leaf area had the largest error percentage of 2.3%; however, its largest mean error percentage was only 0.6 ± 0.5%. The smallest error was associated with the leaf width with the largest mean error and mear error percentage of 0.61 ± 0.35 mm and 1.5 ± 1.0%, respectively. It is thus promising to apply this simple approach for screening the dimensions and area of many leaves with different shapes and sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. vtv.vn: Vietnamese perilla exported to Japan (2017). https://english.vtv.vn/news/vietnamese-perilla-exported-to-japan-20170712152526544.htm. Accessed 02 October 2020

  2. Tuyen, N., Tu, A.: Sisho’s farm (2017). https://vnexpress.net/trang-trai-tia-to-700-dong-mot-la-xuat-di-nhat-3614332.html. Accessed 20 October 2020

  3. Zhang, W.: Digital image processing method for estimating leaf length and width tested using kiwifruit leaves (Actinidia chinensis Planch). PLoS ONE 15(7), 1–14 (2020). https://doi.org/10.1371/journal.pone.0235499

    Article  Google Scholar 

  4. Easlon, H.M., Bloom, A.J.: Easy leaf area: automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2(7), 1400033 (2014). https://doi.org/10.3732/apps.1400033

    Article  Google Scholar 

  5. Tech, A.R.B., da Silva, A.L.C., Meira, L.A., de Oliveira, M.E., Pereira, L.E.T.: Methods of image acquisition and software development for leaf area measurements in pastures. Comput. Electron. Agric. 153(February), 278–284 (2018). https://doi.org/10.1016/j.compag.2018.08.025

    Article  Google Scholar 

  6. Mahanti, N.K., Chakraborty, S.K., Babu, V.B.: Non-destructive estimation of spinach leaf area: image processing and artificial neural network based approach. Curr. J. Appl. Sci. Technol. 39(16), 146–153 (2020). https://doi.org/10.9734/CJAST/2020/v39i1630746

  7. CI-203 Wand Leaf Area Meter. https://ictinternational.com/products/ci-203/ci-203-wand-leaf-area-meter/

  8. LI-COR: LI-3100C Area Meter. https://www.licor.com/env/products/leaf_area/LI-3100C/. Accessed 02 October 2020

  9. Li, X., Zhang, B., Sander, P.V., Liao, J.: Blind geometric distortion correction on images through deep learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2019, pp. 4850–4859 (2019). https://doi.org/10.1109/CVPR.2019.00499

  10. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994). https://doi.org/10.1109/CVPR.1994.323794

  11. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997). https://doi.org/10.1109/30.580378

    Article  Google Scholar 

  12. Tekalp, A.M.: Digital video processing, no. January 1995 (2017)

    Google Scholar 

  13. Wallisch, P., Lusignan, M., Benayoun, M., Baker, T., Dickey, A., Hatsopoulos, N.: MATLAB for Neuroscientists: An Introduction to Scientific Computing in MATLAB (2013)

    Google Scholar 

  14. Chaouch, M., Verroust-Blondet, A.: Alignment of 3D models. Graph. Models 71(2), 63–76 (2009). https://doi.org/10.1016/j.gmod.2008.12.006

    Article  Google Scholar 

  15. Savriama, Y.: A Step-by-step guide for geometric morphometrics of floral symmetry. Front. Plant Sci. 9 (2018). https://doi.org/10.3389/fpls.2018.01433

  16. Shi, P., Zheng, X., Ratkowsky, D.A., Li, Y., Wang, P., Cheng, L.: A simple method for measuring the bilateral symmetry of leaves. Symmetry (Basel) 10(4), 1–10 (2018). https://doi.org/10.3390/sym10040118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanh-Nghiem Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, CN., Thach, DK., Phan, QT., Nguyen, CN. (2021). Vision-Based Measurement of Leaf Dimensions and Area Using a Smartphone. In: Choudhury, S., Gowri, R., Sena Paul, B., Do, DT. (eds) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 1341. Springer, Singapore. https://doi.org/10.1007/978-981-16-1510-8_28

Download citation

Publish with us

Policies and ethics