Skip to main content

Heat Transfer of MHD Channel Flow of Viscoelastic (PTT) Fluid

  • Conference paper
  • First Online:
New Trends in Applied Analysis and Computational Mathematics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1356))

  • 182 Accesses

Abstract

The study presents the heat transfer aspect of MHD channel flow of Phan-Thien-Tanner (PTT) conducting flow accounting for the viscous dissipation. The role of Deborah number substantiates the dual behavior of Newtonian and non-Newtonian aspects of the flow model. The inclusion of two body forces due to magnetic field (force act at a distance) and porosity of the medium enrich the analysis. The important findings are the role of magnetic parameter is to enhance the temperature across the flow domain, whereas Deborah number and other parameters act adversely. Thus, the simulation of the flow parameters provides ample scopes to meet the design requirements in cooling/heating. The most interesting observation is that contribution of viscous dissipative heat seems to be insignificant due to linear variation across the temperature field in the present PTT model indicating the preservation of thermal energy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\vec{B}\) :

Magnetic flux

\(B_{0}\) :

Constant flux density

D/Dt:

Material time derivative

De:

Deborah number

\(\vec{J}\) :

Electric current density

I:

Identity tensor

Kp:

Porosity parameter

L:

Characteristic length

M:

Magnetic parameter

p:

Pressure

\(\overrightarrow {{T^{*} }}\) :

Cauchy stress tensor

\(\vec{V}\) :

Velocity vector

\(\vec{\tau }\) :

Extra stress tensor

λ :

Relaxation time

μ :

Constant viscosity coefficient

σ :

electrical conductivity

ρ :

fluid density

ε :

elongation parameter

\(\nabla\) :

Gradient operator

References

  1. N. Phan-Thien, R.I. Tanner, A new constitutive equation derived from network theory. J. Nonnewton. Fluid Mech. 2, 353–365 (1977)

    Article  Google Scholar 

  2. N. Phan-Thein, J. Rheol. 22, 259–283 (1978)

    Article  Google Scholar 

  3. R.I. Tanner, Engineering Rheology (Clarendon Press, Oxford, 2000)

    MATH  Google Scholar 

  4. P.J. Oliveira, F.T. Pinho, Analytical solution for the fully-developed channel and pipe flow of Phan-Thien-Tanner fluids. J. Fluid Mech. 387, 271–280 (1999)

    Article  MathSciNet  Google Scholar 

  5. F.T. Pinho, P.J. Oliveira, Analysis of forced convection in pipes and channels with simplified Phan-Thien-Tanner fluid. Int. J. Heat Mass Transf. 43, 2273–2287 (2000)

    Article  Google Scholar 

  6. F.T. Pinho, P.J. Oliveria, Axial annular flow of a nonlinear viscoelastic fluid: an analytical solution. J. Nonnewton. Fluid Mech. 93, 325–337 (2000)

    Article  Google Scholar 

  7. M.A. Alves, F.T. Pinho, P.J. Oliveira, Study of steady pipe and channel flows of single-mode Phan-Thien-Tanner fluid. J. Nonnewton. Fluid Mech. 101, 55–76 (2001)

    Article  Google Scholar 

  8. M.F. Letelier, D.A. Siginer, On the fully developed tube flow of a class of non-linear viscoelastic fluids. Int. J. Non-Linear Mech. 40, 485–493 (2005)

    Article  Google Scholar 

  9. A.M. Siddiqui, R. Mahmood, Q.K. Ghori, Some exact solutions for the thin film flow of a PTT fluid. Phys. Lett. A 356, 353–356 (2006)

    Article  Google Scholar 

  10. S. Nasseri, L. Bilston, B. Fasheun, R. Tanner, Modelling the biaxial elongational deformation of soft solids. Rheol. Acta 43, 68–79 (2004)

    Article  Google Scholar 

  11. J.H. He, Int. J. Nonlinear Sci. Numer. Simul. 6(2), 207 (2005)

    MathSciNet  Google Scholar 

  12. P. Loraih, Magneto Fluid Dynamics, Second edn. (Springer), p. 85

    Google Scholar 

  13. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids.Vol. 1 Fluid Mechanics, 2nd edn. (John Wiley and Sons, Inc., Hoboken, New Jersey, 1987)

    Google Scholar 

  14. T. Hayat, S. Noreen, A. Hendi, Peristaltic motion of Phan-Thien-Tanner fluid in the presence of slip condition. J. Biorheol. 25(1), 8–17 (2011)

    Google Scholar 

  15. T. Hayat, S. Noreen, N. Ali, S. Abbasbanday, Peristaltic motion of Phan-Thien-Tanner fluid ina planar channel. Numer. Methods Partial Differ. Equ. 28(3), 737–748 (2012)

    Article  Google Scholar 

  16. T. Hayat, S. Noreen, S. Asghar, A. Hendi, Influence of an induced magnetic field on peristaltic transport of a Phan-Thien-Tanner fluid in an asymmetric channel. Chem. Eng. Commun. 198(5), 609– 628 (2011)

    Google Scholar 

  17. N. Faraz, Y. Khan, D.S. Shankar, Decomposition-transform method for fractional differential equation. Int. J. Nonlinear Sci. Sim. 11, 305–310 (2010)

    Google Scholar 

  18. F. Talay Akyildiz, K. Vajravelu, Magnetohydrodynamic flow of a viscoelastic fluid. Physics Letters A. 372, 3380–3384 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swain, B.K., Das, M., Dash, G.C. (2021). Heat Transfer of MHD Channel Flow of Viscoelastic (PTT) Fluid. In: Paikray, S.K., Dutta, H., Mordeson, J.N. (eds) New Trends in Applied Analysis and Computational Mathematics. Advances in Intelligent Systems and Computing, vol 1356. Springer, Singapore. https://doi.org/10.1007/978-981-16-1402-6_4

Download citation

Publish with us

Policies and ethics