Skip to main content

Gene-Like Precise Construction of Functional DNA Materials

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids
  • 82 Accesses

Abstract

The traditional construction of biomaterials is based on “modification and trial-error screening” strategies, which are less effective and lack of rational design. In recent years, great efforts have been devoted to exploring “function-directional rational design and synthesis” strategies. The biomolecule deoxyribonucleic acid (DNA), which acts as genetic information carrier, has been widely explored as a programmable copolymer that was composed of four deoxyribonucleotide monomers (A, T, C, and G). The sequence of deoxyribonucleotide monomers in DNA molecules determines the assembly behavior and the consequent higher order structures of their assembled structures; furthermore, the sequence information in the DNA molecules implies specific biological functions, such as genetic expression, recognition capability for specific molecules, and biocatalytic capabilities. Therefore, targeting to a specific application, the deoxyribonucleotide monomers in DNA polymer can be rationally programmed and precisely synthesized. The well-designed DNA molecules would spontaneously self-assemble into well-defined structures with specific functions under favorable environments as predicted, thus making DNA a promising building block for the construction of materials with precisely designed structures and tailored functions, which can be termed as “gene-like precise construction” strategies. Besides, the DNA polymers are of excellent biocompatibility, and the DNA-based materials would finally be degradable in vivo. This chapter will introduce the recent progress on DNA-based materials, which mainly include the molecular design principle, assembly strategies, the constructed biomaterials, and their wide applications, mainly based on the research work of our lab. The challenges and future development trend of DNA functional materials are also discussed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali MM, Li F, Zhang Z et al (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–3341

    Article  CAS  PubMed  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM et al (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2:1213–1218

    Article  CAS  PubMed  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–U75

    Article  CAS  PubMed  Google Scholar 

  • Brady RA, Brooks NJ, Cicuta P et al (2017) Crystallization of amphiphilic DNA C-stars. Nano Lett 17:3276–3281

    Article  CAS  PubMed  Google Scholar 

  • Condon A (2006) Designed DNA molecules: principles and applications of molecular nanotechnology. Nat Rev Genet 7:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler JI, Zheng D, Xu X et al (2010) Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett 10:1477–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Lv Z, Xu N et al (2022) Dynamic transformation of DNA nanostructures inside living cells. Chem Plus Chem 87:e202100519

    Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 101:15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Yao C, Wang Z et al (2019) Target-triggered polymerization of branched DNA enables enzyme-free and fast discrimination of single-base changes. iscience 21:228–240

    Google Scholar 

  • Dong Y, Yao C, Zhu Y et al (2020) DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem Rev 120:9420–9481

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Han J-p, Yang D-y (2021) “Gene-like” construction of DNA functional materials. Acta Polym Sin 52:1441–1458

    Google Scholar 

  • Geng J, Yao C, Kou X et al (2018) A fluorescent biofunctional DNA hydrogel prepared by enzymatic polymerization. Adv Healthc Mater 7:1700998

    Google Scholar 

  • Goodman RP, Berry RM, Turberfield AJ (2004) The single-step synthesis of a DNA tetrahedron. Chem Commun 2004:1372–1373

    Google Scholar 

  • Gueron M, Leroy JL (2000) The i-motif in nucleic acids. Curr Opin Struct Biol 10:326–331

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Bai L, Li F et al (2019a) Branched DNA architectures produced by PCR-based assembly as gene compartments for cell-free gene-expression reactions. Chembiochem 20:2597–2603

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Li F, Bai L et al (2019b) Gene circuit compartment on nanointerface facilitatating cascade gene expression. J Am Chem Soc 141:19171–19177

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Li F, Liu C et al (2020) Construction of organelle-like architecture by dynamic DNA assembly in living cells. Angew Chem Int Ed 59:20651–20658

    Article  CAS  Google Scholar 

  • Han D, Pal S, Nangreave J et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    Article  CAS  PubMed  Google Scholar 

  • Han J, Cui Y, Gu Z et al (2021a) Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials 273:120846

    Article  CAS  PubMed  Google Scholar 

  • Han J, Guo Y, Wang H et al (2021b) Sustainable bioplastic made from biomass DNA and ionomers. J Am Chem Soc 143:19486–19497

    Article  CAS  PubMed  Google Scholar 

  • Hasuike E, Akimoto AM, Kuroda R et al (2017) Reversible conformational changes in the parallel type G-quadruplex structure inside a thermoresponsive hydrogel. Chem Commun 53:3142–3144

    Article  CAS  Google Scholar 

  • He Y, Chen Y, Liu HP et al (2005a) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127:12202–12203

    Article  CAS  PubMed  Google Scholar 

  • He Y, Tian Y, Chen Y et al (2005b) Sequence symmetry as a tool for designing DNA nanostructures. Angew Chem Int Ed 44:6694–6696

    Article  CAS  Google Scholar 

  • He Y, Tian Y, Ribbe AE et al (2006) Highly connected two-dimensional crystals of DNA six-point-stars. J Am Chem Soc 128:15978–15979

    Article  CAS  PubMed  Google Scholar 

  • He Y, Ye T, Su M et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–U141

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Cecconello A, Idili A et al (2017) Triplex DNA nanostructures: from basic properties to applications. Angew Chem Int Ed Engl 56:15210–15233

    Article  CAS  PubMed  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  CAS  PubMed  Google Scholar 

  • Kahn JS, Hu Y, Willner I (2017) Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc Chem Res 50:680–690

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Nandi S, Nandi AK (2017) Nucleic acid based polymer and nanoparticle conjugates: synthesis, properties and applications. Prog Mater Sci 88:136–185

    Article  CAS  Google Scholar 

  • Lake RJ, Yang Z, Zhang J et al (2019) DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions. Acc Chem Res 52:3275–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JB, Roh YH, Um SH et al (2009) Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat Nanotechnol 4:430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JB, Peng S, Yang D et al (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol 7:816–820

    Article  CAS  PubMed  Google Scholar 

  • Li YG, Tseng YD, Kwon SY et al (2004) Controlled assembly of dendrimer-like DNA. Nat Mater 3:38–42

    Article  CAS  PubMed  Google Scholar 

  • Li C, Rowland MJ, Shao Y et al (2015a) Responsive double network hydrogels of interpenetrating DNA and CB 8 host-guest supramolecular systems. Adv Mater 27:3298–3304

    Article  CAS  PubMed  Google Scholar 

  • Li C, Faulkner-Jones A, Dun AR et al (2015b) Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Ed 54:3957–3961

    Article  CAS  Google Scholar 

  • Li J, Zheng C, Cansiz S et al (2015c) Self-assembly of DNA Nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J Am Chem Soc 137:1412–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Jiang Q, Liu S et al (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258–264

    Google Scholar 

  • Li F, Tang J, Geng J et al (2019) Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci 98:101163

    Google Scholar 

  • Li F, Yu W, Zhang J et al (2021a) Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA delivery. Nat Commun 12:1138

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Lv Z, Zhang X et al (2021b) Supramolecular self-assembled DNA nanosystem for synergistic chemical and gene regulations on cancer cells. Angew Chem Int Ed 60:25557–25566

    Article  CAS  Google Scholar 

  • Li L, Xu S, Yan H et al (2021c) Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and perspectives. Angew Chem Int Ed 60:2221–2231

    Article  CAS  Google Scholar 

  • Li F, Song N, Dong Y et al (2022) A proton-activatable DNA-based nanosystem enables co-delivery of CRISPR/Cas9 and DNAzyme for combined gene therapy. Angew Chem Int Ed Engl 61:e202116569

    CAS  PubMed  Google Scholar 

  • Liu N, Liedl T (2018) DNA-assembled advanced plasmonic architectures. Chem Rev 118:3032–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Chang D, Li Y (2017) Discovery and biosensing applications of diverse RNA-cleaving Dnazymes. Acc Chem Res 50:2273–2283

    Article  CAS  PubMed  Google Scholar 

  • Maria Huguet J, Ribezzi-Crivellari M, Valim Bizarro C et al (2017) Derivation of nearest-neighbor DNA parameters in magnesium from single molecule experiments. Nucleic Acids Res 45:12921–12931

    Google Scholar 

  • Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Netw 4:111–127

    Article  CAS  Google Scholar 

  • Park N, Um SH, Funabashi H et al (2009) A cell-free protein-producing gel. Nat Mater 8:432–437

    Article  CAS  PubMed  Google Scholar 

  • Phan AT, Mergny JL (2002) Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res 30:4618–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian L, Wang Y, Zhang Z et al (2006) Analogic China map constructed by DNA. Chin Sci Bull 51:2973–2976

    Article  CAS  Google Scholar 

  • Qu Y, Yang J, Zhan P et al (2017) Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs. ACS Appl Mater Interfaces 9:20324–20329

    Article  CAS  PubMed  Google Scholar 

  • Rhee S, Han ZJ, Liu KL et al (1999) Structure of a triple helical DNA with a triplex-duplex junction. Biochemistry 38:16810–16815

    Article  CAS  PubMed  Google Scholar 

  • Roh YH, Ruiz RCH, Peng S et al (2011) Engineering DNA-based functional materials. Chem Soc Rev 40:5730–5744

    Article  CAS  PubMed  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  • Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94:4262–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeman NC, Sleiman HF (2018) DNA nanotechnology. Nat Rev Mater 3:17068

    Google Scholar 

  • Shang Y, Li N, Liu S et al (2020) Site-specific synthesis of silica nanostructures on DNA origami templates. Adv Mater 32:2000294

    Google Scholar 

  • Simmel FC, Yurke B, Singh HR (2019) Principles and applications of nucleic acid strand displacement reactions. Chem Rev 119:6326–6369

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Yao C, Gu Z et al (2020) Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew Chem Int Ed 59:2490–2495

    Article  CAS  Google Scholar 

  • Tian C, Li X, Liu Z et al (2014) Directed self-assembly of DNA tiles into complex nanocages. Angew Chem Int Ed 53:8041–8044

    Article  CAS  Google Scholar 

  • Um SH, Lee JB, Park N et al (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 5:797–801

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Gonzalez M, Willner I (2020) Stimuli-responsive biomolecule-based hydrogels and their applications. Angew Chem Int Ed 59:15342–15377

    Article  CAS  Google Scholar 

  • Wang Z-G, Zhan P, Ding B (2013) Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline. ACS Nano 7:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Sun W, Wright G et al (2016a) Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater 28:8912–8920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wu S, Tian C et al (2016b) Retrosynthetic analysis-guided breaking tile symmetry for the assembly of complex DNA nanostructures. J Am Chem Soc 138:13579–13585

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chao J, Liu H et al (2017) Clamped hybridization chain reactions for the self-assembly of patterned DNA hydrogels. Angew Chem Int Ed 56:2171–2175

    Article  CAS  Google Scholar 

  • Wang D, Cui J, Gan M et al (2020) Transformation of biomass DNA into biodegradable materials from gels to plastics for reducing petrochemical consumption. J Am Chem Soc 142:10114–10124

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Xie S, Jin Z et al (2017) An electrochemical impedance biosensor for Hg 2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction. Biosens Bioelectron 98:466–472

    Article  Google Scholar 

  • Wu Y, Li C, Boldt F et al (2014) Programmable protein-DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem Commun 50:14620–14622

    Article  CAS  Google Scholar 

  • Wu X-R, Wu C-W, Ding F et al (2017a) Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering. Chin Chem Lett 28:851–856

    Article  CAS  Google Scholar 

  • Wu Z, Fan H, Satyavolu NSR et al (2017b) Imaging endogenous metal ions in living cells using a DNAzyme-catalytic hairpin assembly probe. Angew Chem Int Ed 56:8721–8725

    Article  CAS  Google Scholar 

  • Wu L, Wang Y, Xu X et al (2021) Aptamer-based detection of circulating targets for precision medicine. Chem Rev 121:12035–12105

    Article  CAS  PubMed  Google Scholar 

  • Xiao F, Lin L, Chao Z et al (2020) Organic spherical nucleic acids for the transport of a NIR-II-emitting dye across the blood-brain barrier. Angew Chem Int Ed 59:9702–9710

    Article  CAS  Google Scholar 

  • Yang D, Campolongo MJ, Tran TNN et al (2010) Novel DNA materials and their applications. Wires Nanomed Nanobi 2:648–669

    Article  CAS  Google Scholar 

  • Yang D, Peng S, Hartman MR et al (2013) Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Sci Rep 3:3165

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang D, Hartman MR, Derrien TL et al (2014) DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 47:1902–1911

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yao C, Li F et al (2018) Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance. Small 14:1800185

    Article  Google Scholar 

  • Yao C, Tang H, Wu W et al (2020) Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J Am Chem Soc 142:3422–3429

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Zhu C, Tang J et al (2021) T lymphocyte-captured DNA network for localized immunotherapy. J Am Chem Soc 143:19330–19340

    Article  CAS  PubMed  Google Scholar 

  • Yin P, Choi HMT, Calvert CR et al (2008) Programming biomolecular self-assembly pathways. Nature 451:318–U314

    Article  CAS  PubMed  Google Scholar 

  • Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Su M, He Y et al (2008) Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc Natl Acad Sci U S A 105:10665–10669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Jean SR, Ahmed S et al (2017) Multifunctional quantum dot DNA hydrogels. Nat Commun 8:381

    Google Scholar 

  • Zhang Y, Tu J, Wang D et al (2018) Programmable and multifunctional DNA-based materials for biomedical applications. Adv Mater 30:1703658

    Google Scholar 

  • Zhao H, Zhang Z, Zuo D et al (2021a) A synergistic DNA-polydopamine-MnO2 nanocomplex for near-infrared-light-powered DNAzyme-mediated gene therapy. Nano Lett 21:5377–5385

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Lv J, Li F et al (2021b) Enzymatical biomineralization of DNA nanoflowers mediated by manganese ions for tumor site activated magnetic resonance imaging. Biomaterials 268:120591

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Yang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, F., Li, S., Yang, D. (2022). Gene-Like Precise Construction of Functional DNA Materials. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics