Skip to main content

Molecular Beacons With and Without Quenchers

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids
  • 141 Accesses

Abstract

Modified nucleic acids have a wide range of applications in many areas of biochemistry. In particular, fluorescence-based nucleic acid systems have been studied extensively for their implementation in molecular biology as platforms for disease diagnosis. A hybridization probe is a fluorescent oligonucleotide used in DNA analysis, operating through sequence-specific complementary binding of a short synthetic oligonucleotide containing a fluorescent tag. Such fluorescent oligonucleotides play important roles in single-nucleotide polymorphism (SNP) typing, allowing both quantitative and qualitative analyses. Among them, stem–loop oligonucleotide probes have been developed to improve the specificity and selectivity toward target DNA. A molecular beacon (MB), a representative oligonucleotide probe having a stem–loop structure containing fluorescent and quencher units, is a probe used in biomolecular recognition. MB-based assays are fast, simple, and inexpensive and they enable real-time monitoring of nucleic acid responses in vivo and in vitro. Modifications of the structures and functions of MBs can lead to improved performance. For example, quencher-free molecular beacons (QF-MBs) are MBs, in which the quenching agent has been removed. Despite the absence of a quencher, QF-MBs can also identify specific target DNAs with high selectivity and sensitivity. MB and QF-MB probes have been applied widely in various fields, including SNP typing, monitoring of polymerase chain reactions (PCR), real-time detection of DNA–RNA hybridization in living cells, DNA mutation analysis, and disease diagnosis, including point-of-care (POC) testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bonnet G et al (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci U S A 96:6171–6176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broude NE (2002) Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends Biotechnol 20:249–256

    Article  PubMed  CAS  Google Scholar 

  • Brown LJ et al (2000) Molecular beacons attached to glass beads fluoresce upon hybridisation to target DNA. J Chem Soc Chem Commun:621–622. https://doi.org/10.1039/B000389L

  • Chen M et al (2017) A molecular beacon-based approach for live-cell imaging of RNA transcripts with minimal target engineering at the single-molecule level. Sci Rep 7:1550

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J et al (2020) Recent advances in fluorescence resonance energy transfer-based probes in nucleic acid diagnosis. Anal Methods 12:884–893

    Article  Google Scholar 

  • Conlet NR et al (2007) Bulk and single-molecule characterization of an improved molecular beacon utilizing H-dimer excitonic behavior. J Phys Chem B 111:7929–7931

    Article  Google Scholar 

  • Dobson N (2003) Synthesis of HyBeacons and dual-labelled probes containing 2′-fluorescent groups for use in genetic analysis. Chem Commun:1234–1235. https://doi.org/10.1039/B302855K

  • Drake TJ, Tan W (2004) Molecular beacon DNA probes and their bioanalytical applications. Appl Spectrosc 25:269–280

    Article  Google Scholar 

  • Dubertret B et al (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370

    Article  PubMed  CAS  Google Scholar 

  • Fang X et al (1999) Designing a novel molecular Beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121:2921–2922

    Article  CAS  Google Scholar 

  • Fujimoto K et al (2004) Unambiguous detection of target DNAs by excimer–monomer switching molecular beacons. J Org Chem 69:3271–3275

    Article  PubMed  CAS  Google Scholar 

  • Gao J et al (2020) 2′-O-methyl molecular beacon: a promising molecular tool that permits elimination of sticky-end pairing and improvement of detection sensitivity. RSC Adv 10:41618–41624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerasimova YV et al (2010) A single molecular Beacon probe is sufficient for the analysis of multiple nucleic acid sequences. Chembiochem 11:1762–1768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giesendorf BAJ et al (1998) Molecular beacons: a new approach for semiautomated mutation analysis. Clin Chem 44:482–486

    Article  PubMed  CAS  Google Scholar 

  • Goel G et al (2005) Molecular beacon: a multitask probe. J Appl Microbiol 99:435–442

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves OSL et al (2019) Detection of miRNA cancer biomarkers using light activated molecular beacons. RSC Adv 9:12766–12783

    Article  PubMed  PubMed Central  Google Scholar 

  • Han SX et al (2013) Molecular beacons: a novel optical diagnostic tool. Arch Immunol Ther Exp 61:139–148

    Article  Google Scholar 

  • Heinlein T et al (2003) Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J Phys Chem B 107:7957–7964

    Article  CAS  Google Scholar 

  • Huang J et al (2015) Biosensing using hairpin DNA probes. Rev Anal Chem 34:1–27

    Article  Google Scholar 

  • Hwang GT et al (2004a) A highly discriminating quencher-free molecular Beacon for probing DNA. J Am Chem Soc 126:6528–6529

    Article  PubMed  CAS  Google Scholar 

  • Hwang GT et al (2004b) Fluorescent oligonucleotide incorporating 5-(1-ethynylpyrenyl)-2′-deoxyuridine: sequence-specific fluorescence changes upon duplex formation. Tetrahedron Lett 45:3543–3546

    Article  CAS  Google Scholar 

  • Jackson M et al (2018) The genetic basis of disease. Essays Biochem 62:643–723

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson MK et al (2002) Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. J Am Chem Soc 124:6950–6956

    Article  PubMed  CAS  Google Scholar 

  • Karlsen KK et al (2013) A quencher-free molecular beacon design base on pyrene excimer fluorescence using pyrene-labeled UNA (unlocked nucleic acid). Bioorg Med Chem 21:6186–6190

    Article  PubMed  CAS  Google Scholar 

  • Kashida H et al (2012) Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation. Bioorg Med Chem 20:4310–4315

    Article  PubMed  CAS  Google Scholar 

  • Kerr E et al (2021) Amplification-free electrochemiluminescence molecular beacon-based microRNA sensing using a mobile phone for detection. Sensors Actuators B Chem 330:129261

    Article  CAS  Google Scholar 

  • Knemeyer JP et al (2005) Self-quenching DNA probes based on dye dimerization for identification of mycobacteria. Int J Environ Anal Chem 85:625–637

    Article  CAS  Google Scholar 

  • Kong DM et al (2003) Duplex probes: a new approach for the detection of specific nucleic acids in homogeneous assays. Anal Chim Acta 491:135–143

    Article  CAS  Google Scholar 

  • Kostrikis LG et al (1998) Spectral genotyping of human alleles. Science 279:1228–1229

    Article  PubMed  CAS  Google Scholar 

  • Lee IJ, Kim BH (2011) Labeling oligonucleotides toward the biomedical probe. In: Zhang LH, Chattopadhyaya J (eds) Medicinal chemistry of nucleic acids. Wiley, Hoboken, pp 292–334

    Chapter  Google Scholar 

  • Li Q et al (2002) A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res 30:e5

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2006) Combinatorial fluorescence energy transfer molecular beacons for probing nucleic acnd sequences. Photochem Photobiol Sci 5:896–902

    Article  PubMed  CAS  Google Scholar 

  • Li Y et al (2008) Molecular beacons: An optimal multifunctional biological probe. Biophys Res Commun 373:457–461

    Article  CAS  Google Scholar 

  • Lu CH et al (2010) Increasing the sensitivity and single-base mismatch selectivity of the molecular Beacon using graphene oxide as the “nanoquencher”. Chem Eur J 16:4889–4894

    Article  PubMed  CAS  Google Scholar 

  • Ma D et al (2016) DNA-based ATP sensing. Trends. Anal Chem 77:226–241

    CAS  Google Scholar 

  • Mao S et al (2020) Recent advances in the molecular beacon technology for live-cell single-molecule imaging. iScience 23:101801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marras SAE et al (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 30:E122

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuo T (1998) In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochim Biophys Acta 1379:178–184

    Article  PubMed  CAS  Google Scholar 

  • Moutsiopoulou A et al (2019) Molecular aptamer beacons and their applications in sensing, imaging, and diagnostics. Small 35:1902248

    Article  Google Scholar 

  • Nazarenko I et al (2002a) Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res 30:2089–2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazarenko I et al (2002b) Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res 30:e37

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto A et al (2004) Pyrene-labeled base-discriminating fluorescent DNA probes for homogeneous SNP typing. J Am Chem Soc 126:4820–4827

    Article  PubMed  CAS  Google Scholar 

  • Okamoto A et al (2006) Simple SNP typing assay using a base-discriminating fluorescent probe. Mol BioSyst 2:122–127

    Article  PubMed  CAS  Google Scholar 

  • Park JW et al (2015) Quencher-free molecular aptamer beacons (QF-MABs) for detection of ATP. Bioorg Med Chem Lett 25:4597–4600

    Article  PubMed  CAS  Google Scholar 

  • Park Y et al (2018) Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon. Bioorg Med Chem Lett 28:77–80

    Article  PubMed  CAS  Google Scholar 

  • Piatek AS et al (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 16:359–363

    Article  PubMed  CAS  Google Scholar 

  • Piestert O et al (2003) A single-molecule sensitive DNA hairpin system based on intramolecular electron transfer. Nano Lett 3:979–982

    Article  CAS  Google Scholar 

  • Podder A et al (2021) Fluorescent nucleic acid systems for biosensors. Bull Chem Soc Jpn 94:1010–1035

    Article  CAS  Google Scholar 

  • Ryu JH et al (2007) Triad base pairs containing fluorene unit for quencher-free SNP typing. Tetrahedron 63:3538–3547

    Article  CAS  Google Scholar 

  • Saito Y et al (2004) Base-discriminating fluorescent (BDF) nucleoside: distinction of thymine by fluorescence quenching. Chem Commun:1704–1705. https://doi.org/10.1039/B405832A

  • Santangelo PJ et al (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32:e57

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo YJ et al (2005) Quencher-free, end-stacking oligonucleotides for probing single-base mismatches in DNA. Org Lett 7:4931–4933

    Article  PubMed  CAS  Google Scholar 

  • Seo YJ et al (2006) Cholesterol-linked fluorescent molecular beacons with enhanced cell permeability. Bioconjug Chem 17:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Seo YJ et al (2007a) Quencher-free molecular beacon systems with two pyrene units in the stem region. Tetrahedron Lett 47:4037–4039

    Article  Google Scholar 

  • Seo YJ et al (2007b) Self-duplex formation of an APy substituted oligodeoxyadenylate and its unique fluorescence. J Am Chem Soc 129:5244–5247

    Article  PubMed  CAS  Google Scholar 

  • Sokol DL et al (1998) Real time detection of DNA∙RNA hybridization in living cells. Proc Natl Acad Sci USA 95:11538–11543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song S et al (2009) Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed 48:8670–8674

    Article  CAS  Google Scholar 

  • Stöhr K et al (2005) Species-specific identification of mycobacterial 16S rRNA PCR amplicons using smart probes. Anal Chem 77:7195–7203

    Google Scholar 

  • Tan W et al (2000) Molecular beacons: a novel DNA probe for nucleic acid and protein studies. Chem Eur J 6:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Tan L et al (2005) Molecular beacons for bioanalytical applications. Analyst 130:1002–1005

    Article  PubMed  CAS  Google Scholar 

  • Tan X et al (2014) Label-free molecular beacons for biomolecular detection. Anal Chem 86:10864–10869

    Article  PubMed  CAS  Google Scholar 

  • Tsourkas A et al (2001) Structure–function relationships of shared-stem and conventional molecular beacons. Nucleic Acids Res 30:4208–2415

    Article  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S et al (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16:49–53

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S et al (2000) Wavelength-shifting molecular beacons. Nat Biotechnol 18:1191–1196

    Article  PubMed  CAS  Google Scholar 

  • Venkatesan N et al (2008) Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. Chem Soc Rev 37:648–663

    Article  PubMed  CAS  Google Scholar 

  • Vet JAM, Marras SAE (2005) Design and optimization of molecular beacon real-time polymerase chain reaction assays. In: Herdewjin P (ed) Methods in molecular biology. Oligonucleotide synthesis: methods and applications, vol 288. Humana Press, Totowa, pp 273–290

    Chapter  Google Scholar 

  • Yang CJ et al (2005) Molecular assembly of superquenchers in signaling molecular interactions. J Am Chem Soc 127:12772–12773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang R et al (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130:8351–8358

    Article  PubMed  CAS  Google Scholar 

  • Yeh HY et al (2010) Molecular beacon–quantum dot–Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chem Commun 16:3914–3916

    Article  Google Scholar 

  • Yi JW et al (2011) Quencher-free molecular beacon: enhancement of the signal-to-background ratio with graphene oxide. Bioorg Med Chem Lett 21:704–706

    Article  PubMed  CAS  Google Scholar 

  • Zadeh JN et al (2011) Software news and updates NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  PubMed  CAS  Google Scholar 

  • Zhang P et al (2001) Design of a molecular beacon DNA probe with two fluorophores. Angew Chem Int Ed 40:402–405

    Article  CAS  Google Scholar 

  • Zheng J et al (2015) Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev 44:3036–3055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeang Hyean Kim .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, S., Kim, B.H. (2022). Molecular Beacons With and Without Quenchers. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics