Skip to main content

Antioxidant Activity of Phytochemicals in Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Antioxidants play a critical role in maintaining cellular redox homeostasis. When activated, antioxidants modulate several signaling pathways which affects the survival and proliferation of the cells. Although the antioxidant and pro-oxidant role of a phytochemical compound in cancer progression is debatable, identifying the molecular mechanism of a particular compound provides information of its therapeutic value. Since phytochemicals act bi-directionally by either increasing or decreasing oxidative stress, identifying the dose and molecular mechanism is important in cancer. Phytochemicals have been studied extensively using in vitro and in vivo methods for their anti-cancer activity. The availability of extensive literature on mode of action combined with a desired safety profile makes phytochemicals an ideal class to be developed as anti-cancer agents. Due to the ease of inculcating phytochemicals in regular diet, more focus has been towards preventive effects of phytochemicals in cancer and many studies on phytochemicals with antioxidant activity have shown plausible outcomes. In this chapter, we provide a brief overview of the intracellular redox system and role of reactive oxygen species (ROS) in cancer, and further delve into the antioxidant mechanisms of phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali H, Dixit S (2015) Quercetin attenuates the development of 7, 12-dimethyl benz (a) anthracene (DMBA) and croton oil-induced skin cancer in mice. J Biomed Res 29(2):139–144

    PubMed  Google Scholar 

  • Ambrosone CB, Zirpoli GR, Hutson AD, McCann WE, McCann SE, Barlow WE et al (2020) Dietary supplement use during chemotherapy and survival outcomes of patients with breast cancer enrolled in a cooperative group clinical trial (SWOG S0221). J Clin Oncol 38(8):804–814

    Article  PubMed  CAS  Google Scholar 

  • Cen J, Zhang L, Liu F, Zhang F, Ji BS (2016) Long-term alteration of reactive oxygen species led to multidrug resistance in MCF-7 cells. Oxidative Med Cell Longev 2016:7053451

    Article  CAS  Google Scholar 

  • Chan DW, Liu VW, Tsao GS, Yao KM, Furukawa T, Chan KK et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29(9):1742–1750

    Article  PubMed  CAS  Google Scholar 

  • Claesson-Welsh L (2016) VEGF receptor signal transduction—A brief update. Vasc Pharmacol 86:14–17

    Article  CAS  Google Scholar 

  • Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2017) Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168(4):692–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das CK, Linder B, Bonn F, Rothweiler F, Dikic I, Michaelis M et al (2018) BAG3 overexpression and cytoprotective autophagy mediate apoptosis resistance in chemoresistant breast cancer cells. Neoplasia 20(3):263–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Khoury F, Corcos L, Durand S, Simon B, Le Jossic-Corcos C (2016) Acquisition of anticancer drug resistance is partially associated with cancer stemness in human colon cancer cells. Int J Oncol 49(6):2558–2568

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Meng Q, Saha T, Sarkar FH, Rosen EM (2009) Low concentrations of diindolylmethane, a metabolite of indole-3-carbinol, protect against oxidative stress in a BRCA1-dependent manner. Cancer Res 69(15):6083–6091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ford K, Hanley CJ, Mellone M, Szyndralewiez C, Heitz F, Wiesel P et al (2020) NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors. Cancer Res 80(9):1846–1860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaikwad S, Srivastava SK (2021) Role of phytochemicals in perturbation of redox homeostasis in cancer. Antioxidants (Basel) 10(1):83

    Article  CAS  Google Scholar 

  • Giovanelli P, Sandoval TA, Cubillos-Ruiz JR (2019) Dendritic cell metabolism and function in tumors. Trends Immunol 40(8):699–718

    Article  PubMed  CAS  Google Scholar 

  • Glorieux C, Calderon PB (2017) Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 398(10):1095–1108

    Article  PubMed  CAS  Google Scholar 

  • Han DH, Lee MJ, Kim JH (2006) Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res 26(5A):3601–3606

    PubMed  CAS  Google Scholar 

  • Holian O, Wahid S, Atten MJ, Attar BM (2002) Inhibition of gastric cancer cell proliferation by resveratrol: role of nitric oxide. Am J Physiol Gastrointest Liver Physiol 282(5):G809–G816

    Article  PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  PubMed  CAS  Google Scholar 

  • Kandala PK, Srivastava SK (2012a) Regulation of macroautophagy in ovarian cancer cells in vitro and in vivo by controlling glucose regulatory protein 78 and AMPK. Oncotarget 3(4):435–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandala PK, Srivastava SK (2012b) Diindolylmethane suppresses ovarian cancer growth and potentiates the effect of cisplatin in tumor mouse model by targeting signal transducer and activator of transcription 3 (STAT3). BMC Med 10:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kandala PK, Srivastava SK (2012c) Diindolylmethane-mediated Gli1 protein suppression induces anoikis in ovarian cancer cells in vitro and blocks tumor formation ability in vivo. J Biol Chem 287(34):28745–28754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khanduja KL, Gandhi RK, Pathania V, Syal N (1999) Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem Toxicol 37(4):313–318

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Piao MJ, Cho SJ, Lee NH, Hyun JW (2012) Phloroglucinol protects human keratinocytes from ultraviolet B radiation by attenuating oxidative stress. Photodermatol Photoimmunol Photomed 28(6):322–331

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Han Y, Wang W, Jo H, Kim H, Kim S et al (2021) Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomol Ther 11(8):1107

    CAS  Google Scholar 

  • Luis A, Martins JD, Silva A, Ferreira I, Cruz MT, Neves BM (2014) Oxidative stress-dependent activation of the eIF2alpha-ATF4 unfolded protein response branch by skin sensitizer 1-fluoro-2,4-dinitrobenzene modulates dendritic-like cell maturation and inflammatory status in a biphasic manner [corrected]. Free Radic Biol Med 77:217–229

    Article  PubMed  CAS  Google Scholar 

  • Maurya AK, Vinayak M (2015) Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep 42(9):1419–1429

    Article  PubMed  CAS  Google Scholar 

  • O‘Sullivan AM, O‘Callaghan YC, O‘Grady MN, Queguineur B, Hanniffy D, Troy DJ et al (2012) Assessment of the ability of seaweed extracts to protect against hydrogen peroxide and tert-butyl hydroperoxide induced cellular damage in Caco-2 cells. Food Chem 134(2):1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40(8):435–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires BRB, Panis C, Alves VD, Herrera A, Binato R, Pizzatti L et al (2019) Label-free proteomics revealed oxidative stress and inflammation as factors that enhance chemoresistance in luminal breast cancer. Oxidative Med Cell Longev 2019:5357649

    Article  CAS  Google Scholar 

  • Pramanik KC, Boreddy SR, Srivastava SK (2011) Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6(5):e20151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad S, Srivastava SK (2020) Oxidative stress and cancer: chemopreventive and therapeutic role of triphala. Antioxidants (Basel) 9(1):72

    Article  CAS  Google Scholar 

  • Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S et al (2019) Role of phytochemicals in cancer prevention. Int J Mol Sci 20(20):4981

    Article  PubMed Central  CAS  Google Scholar 

  • Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M et al (2018) Resveratrol: a double-edged sword in health benefits. Biomedicine 6(3):91

    CAS  Google Scholar 

  • Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI et al (2016) Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Cancer Res 76(20):6006–6016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y, Sahu RP, Srivastava SK (2008) Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis. BMC Cancer 8:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D et al (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280(20):19911–19924

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Bhori M, Kasu YA, Bhat G, Marar T (2018) Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity—exploring the armoury of obscurity. Saudi Pharm J 26(2):177–190

    Article  PubMed  Google Scholar 

  • Siska PJ, Beckermann KE, Mason FM, Andrejeva G, Greenplate AR, Sendor AB et al (2017) Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2(12):e93411

    Article  PubMed Central  Google Scholar 

  • Taira J, Ogi T (2019) Induction of antioxidant protein HO-1 through Nrf2-are signaling due to pteryxin in peucedanum japonicum thunb in RAW264.7 macrophage cells. Antioxidants (Basel) 8(12):621

    Article  CAS  Google Scholar 

  • Tobar N, Villar V, Santibanez JF (2010) ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 340(1–2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA et al (2013) Role of glutathione in cancer progression and chemoresistance. Oxidative Med Cell Longev 2013:972913

    Article  CAS  Google Scholar 

  • Truong TH, Carroll KS (2013) Redox regulation of protein kinases. Crit Rev Biochem Mol Biol 48(4):332–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varma SR, Sivaprakasam TO, Mishra A, Kumar LM, Prakash NS, Prabhu S et al (2016) Protective effects of triphala on dermal fibroblasts and human keratinocytes. PLoS One 11(1):e0145921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Ma W, Du J (2018) Beta-caryophyllene (BCP) ameliorates MPP+ induced cytotoxicity. Biomed Pharmacother 103:1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Yao CW, Kang KA, Piao MJ, Ryu YS, Fernando P, Oh MC et al (2017) Reduced autophagy in 5-fluorouracil resistant colon cancer cells. Biomol Ther (Seoul) 25(3):315–320

    Article  CAS  Google Scholar 

  • Zaidieh T, Smith JR, Ball KE, An Q (2019) ROS as a novel indicator to predict anticancer drug efficacy. BMC Cancer 19(1):1224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13(12):1465–1478

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu ZG (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23(7):898–914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zykova TA, Zhu F, Zhai X, Ma WY, Ermakova SP, Lee KW et al (2008) Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinog 47(10):797–805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Srivastava .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gaikwad, S.R., Srivastava, S.K. (2022). Antioxidant Activity of Phytochemicals in Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics