Skip to main content

Redox Signaling

Hallmarks of Cancer Progression and Resistance to Treatment

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

A diverse redox microenvironment exists in healthy cells and cancer cells. Homeostasis of the redox microenvironment of a healthy cell is severely deregulated in cancer pathogenesis. The loss and gain of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have a detrimental effect on cellular physiology. Cancer cells are unique for reprogramming and reorganizing the metabolic circuitries and redox signaling to sustain their high proliferation rate, progression, and metastasis. Recent evidence suggested that oxidative stress-induced signaling plays an essential role in the invasion of cancer cells through extracellular matrix (ECM). The dysregulation of ROS generation in the tumor microenvironment affects the extravasation, intravasation, and colonization of target organs by cancer cells during their migration via the interstitial matrix and basement membrane. The present chapter outlines the redox regulation of ECM involved in cancer progression during oxidative stress. We have discussed the pivotal role of the redox system in the remodeling of cytoskeleton, cell–cell junctions, and cell mobility during cancer progression. The contribution of mitochondria in regulating the interplay between redox homeostasis and metabolism within tumor cells is highlighted. We have described the contribution of altered redox signaling in cancer progression and the development of drug resistance in cancer therapies. The epithelial–mesenchymal transition (EMT), the driving force of cancer cell metastasis and drug resistance, is also explored. A better understanding of the redox signaling pathways in cancer progression and cancer treatment resistance might enable us to use novel strategies for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B, Kumar D (2021) Oxidative stress in cancer cell metabolism. Antioxidants 10(5):642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw RA, Dennis EA (2009) Handbook of cell signaling, 2nd edn. Academic Press, Boston, MA

    Google Scholar 

  • Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3(11-12):649–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comito G, Ippolito L, Chiarugi P, Cirri P (2020) Nutritional exchanges within tumor microenvironment: impact for cancer aggressiveness. Front Oncol 10:396

    PubMed  PubMed Central  Google Scholar 

  • Conour JE, Graham WV, Gaskins HR (2004) A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiol Genomics 18:196–205

    CAS  PubMed  Google Scholar 

  • Ding X, Nie Z, She Z, Bai X, Yang Q, Wang F, Wang F, Geng X (2021) The regulation of ROS-and BECN1-mediated autophagy by human telomerase reverse transcriptase in glioblastoma. Oxidative Med Cell Longev 2021., Article ID 6636510:10

    Google Scholar 

  • Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R (2017) Biology of glucose metabolization in cancer cells. J Oncological Sci 3(2):45–51

    Google Scholar 

  • Faubert B, Solmonson A, DeBerardinis RJ (2020) Metabolic reprogramming and cancer progression. Science 368(6487):eaaw5473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    CAS  PubMed  Google Scholar 

  • Fiaschi T, Chiarugi P (2012) Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012:762825

    PubMed  PubMed Central  Google Scholar 

  • Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR (2019) The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 39(2):517–560

    PubMed  Google Scholar 

  • Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL (2020) ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19(3):1997–2007

    PubMed  PubMed Central  Google Scholar 

  • Hegedűs C, Kovács K, Polgár Z, Regdon Z, Szabó É, Robaszkiewicz A, Forman HJ, Martner A, Virág L (2018) Redox control of cancer cell destruction. Redox Biol 16:59–74

    PubMed  PubMed Central  Google Scholar 

  • Hill BS, Sarnella A, D'Avino G, Zannetti A (2020) Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol 60:202–213

    PubMed  Google Scholar 

  • Jafri MA, Ansari SA, Alqahtani MH, Shay JW (2016) Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 8(1):1–8

    Google Scholar 

  • Jiang J, Wang K, Chen Y, Chen H, Nice EC, Huang C (2017) Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther 2:17036

    PubMed  PubMed Central  Google Scholar 

  • Kim EK, Jang M, Song MJ, Kim D, Kim Y, Jang HH (2019) Redox-mediated mechanism of chemoresistance in cancer cells. Antioxidants 8(10):471

    CAS  PubMed Central  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

    CAS  PubMed  Google Scholar 

  • Landriscina M, Maddalena F, Laudiero G, Esposito F (2009) Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal 11(11):2701–2716

    CAS  PubMed  Google Scholar 

  • Laurindo FRM (2018) Chapter 10: redox cellular signaling pathways in endothelial dysfunction and vascular disease. In: Da Luz PL, Libby P, Chagas ACP, Laurindo FRM (eds) Endothelium and cardiovascular diseases. Academic Press (An imprint of Elsevier), London, pp 127–145

    Google Scholar 

  • Li P, Wu M, Wang J, Sui Y, Liu S, Shi D (2016a) NAC selectively inhibit cancer telomerase activity: a higher redox homeostasis threshold exists in cancer cells. Redox Biol 8:91–97

    CAS  PubMed  Google Scholar 

  • Li R, Jia Z, Trush MA (2016b) Defining ROS in biology and medicine. React Oxygen Species (Apex) 1(1):9–21. https://doi.org/10.20455/ros.2016.803

    Article  Google Scholar 

  • Liao Z, Chua D, Tan NS (2019) Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer 18:65

    PubMed  PubMed Central  Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin ZP, Zhu YL, Ratner ES (2018) Targeting cyclin-dependent kinases for treatment of gynecologic cancers. Front Oncol 8:303

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li Q, Zhou L, Xie N, Nice EC, Zhang H, Huang C, Lei Y (2016) Cancer drug resistance: redox resetting renders away. Oncotarget 7(27):42740

    PubMed  PubMed Central  Google Scholar 

  • Liu CG, Qin JC, Lin YH (2017) Fermentation and redox potential. In: Fermentation processes. IntechOpen, London, pp 23–42

    Google Scholar 

  • Manda G, Isvoranu G, Comanescu MV, Manea A, Butuner BD, Korkmaz KS (2015) The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 5:347–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marengo B, Nitti M, Furfaro AL et al (2016) Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxidative Med Cell Longev 2016:6235641

    Google Scholar 

  • Martínez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11(3):669–702

    PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res 1773(8):1263–1284

    CAS  Google Scholar 

  • Mochizuki T, Furuta S, Mitsushita J, Shang WH, Ito M, Yokoo Y, Yamaura M, Ishizone S, Nakayama J, Konagai A, Hirose K (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25(26):3699–3707

    CAS  PubMed  Google Scholar 

  • Mydin RB, Okekpa SI (2018) Reactive oxygen species, cellular redox homeostasis and cancer, homeostasis - an integrated vision, Fernanda Lasakosvitsch and Sergio dos Anjos Garnes. IntechOpen, London. https://doi.org/10.5772/intechopen.76096

    Book  Google Scholar 

  • Olson, Maynard V. Oxidation-reduction reaction. Encyclopedia Britannica, 20 Apr 2021. https://www.britannica.com/science/oxidation-reduction-reaction. Accessed 21 Aug 2021

  • Paplomata E, O’Regan R (2014) The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol 6(4):154–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Policastro LL, Ibañez IL, Notcovich C, Duran HA, Podhajcer OL (2013) The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal 19(8):854–895

    CAS  PubMed  Google Scholar 

  • Reczek CR, Chandel NS (2017) The two faces of reactive oxygen species in cancer. Ann Rev Cancer Biol 1:79–98

    Google Scholar 

  • Rizza S, Rasola A, Townsend DM, Filomeni G (2018) Redox and metabolic circuits in cancer. Front Oncol 8:403

    PubMed  PubMed Central  Google Scholar 

  • Roberts DD (2017) Extracellular matrix and redox signaling in cellular responses to stress. Antioxid Redox Signal 27(12):771–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DD, Kaur S, Isenberg JS (2017) Regulation of cellular redox signaling by matricellular proteins in vascular biology, immunology, and cancer. Antioxid Redox Signal 27(12):874–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Ye J, Deng F, Wang QJ (2017) Protein kinase D signaling in cancer: a friend or foe? Biochim Biophys Acta (BBA) Rev Cancer 1868(1):283–294

    CAS  Google Scholar 

  • Sai B, Dai Y, Fan S, Wang F, Wang L, Li Z, Tang J, Wang L, Zhang X, Zheng L, Chen F (2019) Cancer-educated mesenchymal stem cells promote the survival of cancer cells at primary and distant metastatic sites via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death Dis 10(12):941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sever R, Brugge JS (2015) Signal transduction in cancer. Cold Spring Harb Perspect Med 5(4):a006098

    PubMed  PubMed Central  Google Scholar 

  • Shay JW, Wright WE (2007) Hallmarks of telomeres in ageing research. J Pathol 211(2):114–123

    CAS  PubMed  Google Scholar 

  • Shiratori R, Furuichi K, Yamaguchi M, Miyazaki N, Aoki H, Chibana H, Ito K, Aoki S (2019) Glycolytic suppression dramatically changes the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial metabolism-dependent manner. Sci Rep 9(1):1–5

    Google Scholar 

  • Smoum R, Rubinstein A, Dembitsky VM, Srebnik M (2012) Boron containing compounds as protease inhibitors. Chem Rev 112(7):4156–4220

    CAS  PubMed  Google Scholar 

  • Song MY, Lee DY, Chun KS, Kim EH (2021) The role of NRF2/KEAP1 signaling pathway in cancer metabolism. Int J Mol Sci 22(9):4376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    PubMed  Google Scholar 

  • Suslow TV (2004) Oxidation-reduction potential (ORP) for water disinfection monitoring, control, and documentation. https://doi.org/10.3733/ucanr.8149. Retrieved from https://escholarship.org/uc/item/1730p498

  • Trybek T, Kowalik A, Góźdź S, Kowalska A (2020) Telomeres and telomerase in oncogenesis. Oncol Lett 20(2):1015–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venning FA, Wullkopf L, Erler JT (2015) Targeting ECM disrupts cancer progression. Front Oncol 5:224

    PubMed  PubMed Central  Google Scholar 

  • Wagner EF, Nebreda ÁR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhou BP (2013) Epithelial-mesenchymal transition—a hallmark of breast cancer metastasis. Cancer Hallmarks 1(1):38–49

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang H, Chen X (2019) Drug resistance and combating drug resistance in cancer. Cancer Drug Resis 2(2):141–160

    Google Scholar 

  • WHO fact sheet on Cancer dated 21st September 2021. https://www.who.int/news-room/fact-sheets/detail/cancer

  • Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D (2018) Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 11:2063

    PubMed  PubMed Central  Google Scholar 

  • Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37(1):266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X (2019) Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 18(1):1–28

    PubMed  PubMed Central  Google Scholar 

  • Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci 19(11):3466

    PubMed Central  Google Scholar 

  • Zandalinas SI, Mittler R (2018) ROS-induced ROS release in plant and animal cells. Free Radic Biol Med 122:21–27

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Bhattacharjee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bhattacharjee, S., Paul, S., RayBarman, C. (2022). Redox Signaling. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_152-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_152-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics