Skip to main content

New Technologies and Tissue Repair and Regeneration (1): Stem Cells, Tissue Engineering, and 3D Technology

  • Chapter
  • First Online:
Regenerative Medicine in China

Abstract

Since its inception, tissue engineering technology has made significant progress in many fields such as biomedicine, such as the separation of new cell sources and seed cells, the design and synthesis of high biomimetic biomaterial scaffolds, the invention of new drugs and delivery systems, and the development of flux bio-manufacturing technology. Such results have led to the rapid development of some innovative clinical treatment strategies; especially, the repair and regeneration of tissue and organ damage have achieved satisfactory clinical results. At present, tissue engineering and regenerative medicine strategies can be broadly classified into three categories: cell-based therapeutic strategies; stent-therapeutic strategies with acellular scaffolds or seeded cells; and cell-loaded structures or matrix complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams DJ, Sebastine IM. Tissue engineering and regenerative medicine: manufacturing challenges. Nanobiotechnol IEE Proc. 2006;6:207–10.

    Google Scholar 

  2. Dimitrov D, Schreve K, de Beer N. Advance in three dimensional printing-state of the art and future perspectives. Rapid Prototyp J. 2006;12:136–47.

    Article  Google Scholar 

  3. Katari R, Peloso A, Zambon JP, et al. Renal bioengineering with scaffolds generated from human kidneys. Nephron Exp Nephrol. 2014;126(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor DK, Bubier JA, Silva KA, et al. Development, structure, and keratin expression in C57BL/6J mouse eccrine glands. Vet Pathol. 2012;49(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  5. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S, Chabassier P, Fricain JC, Amédée J. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6:2494–500.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A. 2013;101:272–84.

    Article  PubMed  CAS  Google Scholar 

  7. Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40:268–80.

    Article  CAS  PubMed  Google Scholar 

  8. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–6.

    Article  CAS  PubMed  Google Scholar 

  9. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–9.

    Article  PubMed  CAS  Google Scholar 

  10. Jones N. Science in three dimensions: the print revolution. Nature. 2012;487:22–3.

    Article  CAS  PubMed  Google Scholar 

  11. Huang S, Yao B, Xie JF, et al. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater. 2016;32:170–7.

    Article  CAS  PubMed  Google Scholar 

  12. Reiffel AJ, Kafka C, Hernandez KA, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One. 2013;8(2):e56506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zopf DA, Hollister SJ, Nelson ME, et al. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368(21):2043–5.

    Article  CAS  PubMed  Google Scholar 

  14. Jones N. Science in three dimensions: the print revolution. Nature. 2012;487:22–3.

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi H, Shiraki K, Ikada Y. Toxicity test of biodegradable polymers by implantation in rabbit cornea. J Biomed Mater Res. 1992;26(11):1463–76.

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad S, Mathews PM, Lindsley K. Boston type 1 keratoprosthesis versus repeat donor keratoplasty for corneal graft failure: a systematic review and meta-analysis. Ophthalmology. 2016;123(1):165–77.

    Article  PubMed  Google Scholar 

  17. Jirásková N, Rozsival P, Burova M. Alpha Cor artificial cornea: clinical outcome. Eye (Lond). 2011;25(9):1138–46.

    Article  Google Scholar 

  18. Birk DE, Lande MA. Corneal and scleral collagen fiber formation in vitro. BBA-Protein Struct. 1981;670(3):362–9.

    Article  CAS  Google Scholar 

  19. Argüeso P, Herreras JM, Calonge M, et al. Analysis of human ocular mucus: effects of neuraminidase and chitinase enzymes. Cornea. 1998;17(2):200.

    Article  PubMed  Google Scholar 

  20. Kim JC, Tseng SCG. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea. 1995;14(5):473–84.

    Article  CAS  PubMed  Google Scholar 

  21. Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 2000;13(2):86.

    Article  Google Scholar 

  22. Rama P, Matuska S, Paganoni G, et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  23. Liu ZG, Li W, Liang LY, et al. Porcine corneal equivalent for xenographs. Science. 2012;Sup:24–6 PMID: 19819356.

    Google Scholar 

  24. Wang TJ, Wang IJ, Hu FR, et al. Applications of biomaterials in corneal endothelial tissue engineering. Cornea. 2016;35(Suppl 1):S25 PMID: 22941807.

    Google Scholar 

  25. Fagerholm P, Lagali NS, Merrett K. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2(46):46–61 PMID: 18428020.

    Google Scholar 

  26. Selvanetti A, Cipolla M, Puddu G. Overuse tendon injuries: basic science and classification. Operat Techniq Sports Med. 1997;5(3):110–7 PMID: 20580082.

    Google Scholar 

  27. Elliott DH. Structure and function of mammalian tendon. Biol Rev. 2019;95(5):1469–185 PMID: 15193884.

    Google Scholar 

  28. Docheva D, Müller SA, Majewski M, et al. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84(1):222–39 PMID: 22763531.

    Google Scholar 

  29. Vincent C, HascallDick K, Heinegård Thomas N. Wight. Proteoglycans. Cell Biol Extracell Matrix. 1991;1991:149–75.

    Google Scholar 

  30. Carr AJ, Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg. 2001;71(B):100–1.

    Google Scholar 

  31. Jay GD, Torres JR, Warman ML, et al. The role of lubricin in the mechanical behavior of synovial fluid. Proc Natl Acad Sci U S A. 2007;104(15):6194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin TW, Cardenas L, Louis J, et al. Biomechanics of tendon injury and repair. J Biomech. 2004;37(6):865–77.

    Article  PubMed  Google Scholar 

  33. Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6(2):181–90.

    CAS  PubMed  Google Scholar 

  34. Thomopoulos S, Parks WC, Rifkin DB, et al. Mechanisms of tendon injury and repair. J Orthop Res. 2015;33(6):832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Song JY, Pineault KM, Wellik DM. Development, repair, and regeneration of the limb musculoskeletal system. Curr Top Dev Biol. 2019;132(5):451–76.

    Article  CAS  PubMed  Google Scholar 

  36. Lee KJ, Clegg PD, Comerford EJ, et al. A comparison of the stem cell characteristics of murine tenocytes and tendon-derived stem cells. BMC Musculoskelet Disord. 2018;19(116):2–9.

    Google Scholar 

  37. Xie HQ, Qu Y, Li XQ, et al. Reconstitution of telomerase activity in human embryonic tendon cells transfected by ptsA58H plasmid. Acta Acad Med Sinic. 2002;24(3):276–80.

    CAS  Google Scholar 

  38. Md Chard JK, Wright BL. Hazleman. Isolation and growth characteristics of adult human tendon fibroblasts. Ann Rheum Dis. 1987;46(5):385–90.

    Article  Google Scholar 

  39. Yin Z, Guo J, Wu T, et al. Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Transl Med. 2016;5(8):1106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young RG, Butler DL, Weber W, et al. Use of mesenchymal stem-cells in a collagen matrix for Achilles tendon repair. J Orthop Res. 1998;16(4):406–13.

    Article  CAS  PubMed  Google Scholar 

  41. Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.

    Article  CAS  PubMed  Google Scholar 

  42. Rui YF, Lui PPY, Li G, et al. Isolation and characterization of multipotent rat tendon-derived stem cells. Tiss Eng PT A. 2010;16(5):1549–58.

    Article  CAS  Google Scholar 

  43. Tan C, Lui PPY, Lee YW, et al. Scx-transduced tendon-derived stem cells (tdscs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One. 2014;9(5):e97453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang B, Liu W, Zhang Y, et al. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials. 2008;29(20):2954–61.

    Article  CAS  PubMed  Google Scholar 

  45. Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials. 2007;28(2):316–25.

    Article  CAS  PubMed  Google Scholar 

  46. Jeon SH, Chung MS, Baek GH, et al. Comparison of loop-tendon versus end-weave methods for tendon transfer or grafting in rabbits. J Hand Surg [Am]. 2009;34(6):1074–9.

    Google Scholar 

  47. Chen CH, Cao Y, Wu YF, et al. Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg [Am]. 2008;33(10):1834–42.

    Article  Google Scholar 

  48. Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33(5):381–94.

    Article  PubMed  Google Scholar 

  49. Hou Y, Mao Z, Wei X, et al. The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing. Biochem Biophys Res Commun. 2009;383(2):235–9.

    Article  CAS  PubMed  Google Scholar 

  50. Thomopoulos S, Harwood FL, Silva MJ, et al. Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J Hand Surg [Am]. 2005;30(3):441–7.

    Article  Google Scholar 

  51. Nirmalanandhan VS, Rao M, Shearn JT, et al. Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J Biomech. 2008;41(4):822–8.

    Article  PubMed  Google Scholar 

  52. Abousleiman RI, Reyes Y, McFetridge P, et al. Tendon tissue engineering using cell-seeded umbilical veins cultured in a mechanical stimulator. Tiss Eng Part A. 2009;15(4):787–95.

    Article  CAS  Google Scholar 

  53. Stops AJ, Heraty KB, Browne M, et al. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech. 2010;43(4):618–26.

    Article  CAS  PubMed  Google Scholar 

  54. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the american heart association. Circulation. 2019;139(10):e56–e528.

    Article  PubMed  Google Scholar 

  55. Maytin M, Colucci WS. Molecular and cellular mechanisms of myocardial remodeling. J Nucl Cardiol. 2002;9(3):319–27.

    Article  PubMed  Google Scholar 

  56. Lu L, Liu M, Sun R, et al. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys. 2015;72(3):865–7.

    Article  CAS  PubMed  Google Scholar 

  57. Guo XM, Wang CY, Tian XC, et al. Engineering cardiac tissue from embryonic stem cells. Methods Enzymol. 2006;420:316–38.

    Article  CAS  PubMed  Google Scholar 

  58. Meganathan K, Sotiriadou I, Natarajan K, et al. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol. 2015;183:117–28.

    Article  PubMed  Google Scholar 

  59. Bai F, Lim CH, Jia J, et al. Directed differentiation of embryonic stem cells into cardiomyocytes by bacterial injection of defined transcription factors. Sci Rep. 2015;5:15014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pacheco-Leyva I, Matias AC, Oliveira DV, et al. CITED2 cooperates with isl1 and promotes cardiac differentiation of mouse embryonic stem cells. Stem Cell Rep. 2016;7(6):1037–49.

    Article  CAS  Google Scholar 

  61. Yamada Y, Wang XD, Yokoyama S, et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem Biophys Res Commun. 2006;342(2):662–70.

    Article  CAS  PubMed  Google Scholar 

  62. Liu Z, Tang Y, Lü S, et al. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. 2013;17(6):782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moon HH, Joo MK, Mok H, et al. MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials. 2014;35(5):1744–54.

    Article  CAS  PubMed  Google Scholar 

  64. Gómez-Mauricio G, Moscoso I, Martín-Cancho MF, et al. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model. Stem Cell Res Ther. 2016;7(1):94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Liu Z, Wang H, Zhang Y, et al. Efficient isolation of cardiac stem cells from brown adipose. J Biomed Biotechnol. 2010;2010:104296.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simpson DG, Majeski M, Borg TK, et al. Regulation of cardiac myocyte protein turnover and myofibrillar structure in vitro by specific directions of stretch. Circ Res. 1999;85(10):e59–69.

    Article  CAS  PubMed  Google Scholar 

  67. Iwakura A, Fujita M, Kataoka K, et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessel. 2003;18(2):93–9.

    Article  Google Scholar 

  68. Yao S, Tong H, Fanglian Y, et al. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces. 2015;7(12):6505–17.

    Article  PubMed  CAS  Google Scholar 

  69. Cortiella J, Niles J, Cantu A, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng A. 2565;16(8):2010.

    Google Scholar 

  70. Hongyu S, Shuanghong L, Xiaoxia J, et al. Carbon nanotubes enhance intercalated disc assembly in cardiacmyocytes via the β1-integrin-mediated signaling pathway. Biomaterials. 2015;55:84–95.

    Article  CAS  Google Scholar 

  71. Kim T, Kahng YH, Lee T, et al. Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol Cell. 2013;36(6):577–82.

    Article  CAS  Google Scholar 

  72. Hitscherich P, Aphale A, Gordan R, et al. Electroactive graphene composite scaffolds for cardiac tissue engineering. J Biomed Mater Res A. 2018;106(11):2923–29331.

    Article  CAS  PubMed  Google Scholar 

  73. Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  74. Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90(3):e40.

    Article  CAS  PubMed  Google Scholar 

  75. Shimizu T, Yamato M, Kikuchi A, et al. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 2003;24(13):2309–16.

    Article  CAS  PubMed  Google Scholar 

  76. Sekine H, Shimizu T, Sakaguchi K, et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 2013;4:1399.

    Article  PubMed  CAS  Google Scholar 

  77. Roberts MA, Tran D, Coulombe KL, et al. Stromal cells in dense collagen promote cardiomyocyte and microvascular patterning in engineered human heart tissue. Tiss Eng Part A. 2016;22(7–8):633–44.

    Article  CAS  Google Scholar 

  78. Wassenaar JW, Gaetani R, Garcia JJ, et al. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-mi treatment. J Am Coll Cardiol. 2016;67(9):1074–86.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang H, Shi J, Wang Y, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials. 2014;35(13):3986–98.

    Article  CAS  PubMed  Google Scholar 

  80. Li X, Zhou J, Liu Z, et al. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials. 2014;35(22):5679–88.

    Article  CAS  PubMed  Google Scholar 

  81. Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration. Stem Cell Res Ther. 2016;18(7):56.

    Article  CAS  Google Scholar 

  82. Jiang S, Guo W, Tian G, Luo X, Peng L, Liu S, Sui X, Guo Q, Li X. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int. 2020;2020:5690252.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Campos Y, Almirall A, Fuentes G, Bloem H, Kaijzel E, Cruz L. Tissue engineering: an alternative to repair cartilage. Tiss Eng Part B Rev. 2019;25(4):357–73.

    Article  Google Scholar 

  84. van der Kraan P, Buma P, van Kuppevelt T, van den Berg W. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthr Cartil. 2002;10(8):631–7.

    Article  Google Scholar 

  85. Armiento A, Stoddart M, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 2018;65:1–20.

    Article  CAS  PubMed  Google Scholar 

  86. Iulian A, Dan L, Camelia T, Claudia M, Sebastian G. Synthetic materials for osteochondral tissue engineering. Adv Exp Med Biol. 2018;1058:31–52.

    Article  CAS  PubMed  Google Scholar 

  87. Nakayama N, Pothiawala A, Lee J, Matthias N, Umeda K, Ang B, Huard J, Huang Y, Sun D. Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cellul Molecul Life Sci: CMLS. 2020;77(13):2543–63.

    Article  CAS  Google Scholar 

  88. Freyria A, Mallein-Gerin F. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury. 2012;43(3):259–65.

    Article  PubMed  Google Scholar 

  89. Koseska A, Bastiaens PI. Cell signaling as a cognitive process. EMBO J. 2017;36(5):568–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32:7411–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guo W, Liu S, Zhu Y, et al. Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int. 2015;2015:517520.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Hubei Scientific and Technical Publishers

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, N. et al. (2021). New Technologies and Tissue Repair and Regeneration (1): Stem Cells, Tissue Engineering, and 3D Technology. In: Fu, X. (eds) Regenerative Medicine in China. Springer, Singapore. https://doi.org/10.1007/978-981-16-1182-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1182-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1181-0

  • Online ISBN: 978-981-16-1182-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics