Skip to main content

Scanning Tunneling Microscopy (STM) Imaging of Carbon Nanotropes: C60, CNT and Graphene

  • Chapter
  • First Online:
Carbon Nanomaterial Electronics: Devices and Applications

Part of the book series: Advances in Sustainability Science and Technology ((ASST))

Abstract

The discovery of fullerenes and other nanosized carbon allotropes has opened a vast new field of possibilities in nanotechnology and has become one of the most promising research areas. Carbon nanomaterials have a wide-scale scientific as well as technological importance because of their distinctly different physical, chemical and electronic properties. ‘Carbon Nanotropes’, the nanoscale carbon allotropes such as Buckminsterfullerenes (C60), Carbon nanotubes (CNTs) and Graphene, show a huge potential toward various devices, sensors and catalytic applications and therefore draw a wide-scale industrial attentions. A better understanding of their formation mechanism along with their direct visualization down to nanometer-scale structural analysis is of high technological demand. Recent advancements in nanoscience and nanotechnology make it possible to study the growth/synthesis along with structure and bonding by analyzing the atomic-scale imaging of these carbon nanotropes. In this aspect, scanning tunneling microscopy (STM) would be a useful tool with extremely high spatial resolution. This chapter is mainly focused on STM imaging of some of the recent carbon nanotropes such as C60, CNTs and graphene to bring together the atomic-scale structure and their related material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Y, Yin Q-Z (2012) Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proc Natl Acad Sci USA 109:19579–19583. https://doi.org/10.1073/pnas.1203826109

    Article  Google Scholar 

  2. Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98:805–808. https://doi.org/10.1073/pnas.98.3.805

    Article  Google Scholar 

  3. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  4. Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF (1993) Thermal conductivity of isotopically modified single crystal diamond. Phys Rev Lett 70:3764–3767. https://doi.org/10.1103/PhysRevLett.70.3764

    Article  Google Scholar 

  5. Hodkiewicz J, Scientific TF (2005) Characterizing carbon materials with Raman spectroscopy. Prog Mater Sci 50:929–961

    Article  Google Scholar 

  6. Titirici M. (2013) Sustainable Carbon Materials from Hydrothermal Processes; John Wiley & Sons Ltd.: Chichester UK.

    Google Scholar 

  7. Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166. https://doi.org/10.1002/smll.201101594

    Article  Google Scholar 

  8. Viswanathan B, Neel P, Varadarajan T (2009) Methods of Activation and Specific Applications of Carbon Materials. In: Viswanathan B (ed). NCCR IIT Madras: Chennai India.

    Google Scholar 

  9. Kaneko K, Ishii C, Ruike M, kuwabara H, (1992) Origin of superhigh surface area and microcrystalline graphiticstructures of activated carbons. Carbon 30:1075–1088. https://doi.org/10.1016/0008-6223(92)90139-N

    Article  Google Scholar 

  10. Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials.Chem Soc Rev 44:250–290. https://doi.org/https://doi.org/10.1039/C4CS00232F

  11. Loos M. Allotropes of Carbon and Carbon Nanotubes. In Carbon Nanotube Reinforced Composites; Elsevier:Amsterdam The Netherlands 2015; pp. 73–101.

    Google Scholar 

  12. Deng J, You Y, Sahajwalla V, Joshi RK (2016) Transforming waste into carbon-based nanomaterials. Carbon 96:105–115. https://doi.org/10.1016/j.carbon.2015.09.033

    Article  Google Scholar 

  13. Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis.Carbon 36:159–175. https://doi.org/https://doi.org/10.1016/S0008-6223(97)00173-5

  14. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868. https://doi.org/10.1038/nmat2885

    Article  Google Scholar 

  15. Wikipedia. Allotropes of carbon [Internet]. Available from: https://en.wikipedia.org/wiki/Allotropes_of_carbon#mediaviewer/File:Eight_Allotropes_of_Carbon.png.

  16. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: A review of graphene. Chem Rev 110:132–145. https://doi.org/10.1021/cr900070d

    Article  Google Scholar 

  17. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1142/9789814287005_0002

    Article  Google Scholar 

  18. Novoselov KS, Fal VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. https://doi.org/10.1038/nature11458

    Article  Google Scholar 

  19. Kaiser W, Bond WL (1959) Nitrogen a major impurity in common type I diamond. Phys Rev 115:857. https://doi.org/10.1103/PhysRev.115.857

    Article  Google Scholar 

  20. Pal’yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV, (1999) Diamond formation from mantle carbonate fluids. Nature 400:417. https://doi.org/10.1038/22678

    Article  Google Scholar 

  21. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385. https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  22. Frondel C, Marvin UB (1967) Lonsdaleite a hexagonal polymorph of diamond.Nature 214:587.http://dx.doi.org/https://doi.org/10.1038/214587a0.

  23. Bundy FP Kasper JS (1967) Hexagonal diamond: a new form of carbon. J Chem Phys 46:3437.http://dx.doi.org/https://doi.org/10.1063/1.1841236.

  24. Lonsdaleite [Internet]. Available from: https://www.answers.com/topic/lonsdaleite.

  25. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene Nature 318:162–163

    Google Scholar 

  26. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56. https://dxdoiorg/101038/354056a0

  27. Pfeiffer R, Pichler T, Kim Y, Kuzmany H (2008) Double-wall carbon nanotubes In: Jorio A Dresselhaus G Dresselhaus M (eds) Carbon Nanotubes Vol 111 Springer Berlin Heidelberg 495. https://dxdoiorg/101007/978-3-540-72865-8_16

  28. Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1:17. https://dxdoiorg/101038/ asiamat20091

  29. Baughman RH, Zakhidov AA, Heer AW (2002) Carbon Nanotubes—the Route Toward Applications Science 297:787–792. https://doi.org/https://doi.org/10.1126/science.1060928

  30. Parker CB, Raut AS, Brown B, Stoner BR, Glass JT (2012) Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res 27:1046.https://dxdoiorg/101557/jmr201243

  31. Yu K, Lu G, Bo Z, Mao S, Chen J (2011) Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J Phys Chem Lett 2:1556. https://doi.org/10.1021/jz200641c

    Article  Google Scholar 

  32. Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y (2004) Smallest carbon nanotube is 3Å in diameter. Phys Rev Lett 92:125502. https://dxdoiorg/101103/PhysRevLett92125502

  33. Martel R, Shea HR, Avouris P (1999) Rings of single-walled carbon nanotubes. Nature 398:299. https://dxdoiorg/101038/18589

  34. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-Temperature Quantum Hall Effect in Graphene. Science 315:1379. https://doi.org/10.1126/science.1137201

    Article  Google Scholar 

  35. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of grapheme. Rev Mod Phys 81:109–162. https://doi.org/10.1103/RevModPhys.81.109

    Article  Google Scholar 

  36. Du X, Skachko I, Duerr F, Luican A, Andrei EY (2009) Fractional quantum Hall effect and insulating phase of Dirac electrons in grapheme. Nature 462:192–195. https://doi.org/10.1038/nature08522

    Article  Google Scholar 

  37. Westervelt R M (2008) Graphene nanoelectronics. Science 324–325

    Google Scholar 

  38. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F et al (2012) Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 947-950. https://doi.org/https://doi.org/10.1126/science.1218461

  39. Lin Y, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY et al (2010) 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 327:662. https://doi.org/https://doi.org/10.1126/science.1184289

  40. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354. https://dxdoiorg/101038/347354a0

  41. Nano-C Fullerene Technology [Internet] Available from: http:// www.nano-ccom/fullerenetech.html

  42. Cheng J, Meziani MJ, Sun YP, Cheng SH (2011) Poly(ethylene glycol)-conjugated multi-walledcarbon nanotubes as an efficient drug carrier for overcoming multidrug resistance. Toxicol Appl Pharmacol 250:184–193. https://doi.org/10.1016/j.taap.2010.10.012

    Article  Google Scholar 

  43. Liu BC, Lyu SC, Lee TJ, Choi SK, Eum SJ, Yang CW, Park CY, Lee CJ (2003) Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. Chem Phys Lett 373:475. https://dxdoiorg/101016/S0009-2614(03)00636-5

  44. Dubey P, Muthukumaran D, Dash S, Mukhopadhyay R, Sarkar S (2005) Synthesis and characterization of water-soluble carbon nanotubes from mustard soot. Pramana 65:681–697. https://dxdoiorg/101007/BF03010456

  45. Wang Z, Zhao Z, Qiu J (2006) Synthesis of branched carbon nanotubes from coal. Carbon 44:1298–1352. https://dxdoiorg/101016/jcarbon200512030

  46. Qiu J, Li Y, Wang Y, Li W (2004) Production of carbon nanotubes from coal. Fuel Process Technol 85:1663 https://dxdoiorg/101016/jfuproc200312010

  47. Novoselov KS, Geim AK, Morozov SV, Jiang D et al (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  48. Loginova E, Bartelt NC, Feibelman PJ, McCarty KF (2009) Factors influencing graphene growth on metal surfaces. New J Phys 11:063046. https://doi.org/10.1088/1367-2630/11/6/063046

    Article  Google Scholar 

  49. Martoccia D, Willmott PR, Brugger T, Björck M et al (2008) Graphene on Ru(0001): A 25x25 supercell. Phys Rev Lett 101:126102. https://doi.org/10.1103/PhysRevLett.101.126102

    Article  Google Scholar 

  50. Oshima C, Tanaka N, Itoh A, Rokuta E, Yamashita K, Sakurai T (2000) A heteroepitaxial multi-atomic-layer system of graphene and h-BN. Surf Rev Lett 7:521–525. https://doi.org/10.1142/S0218625X00000683

    Article  Google Scholar 

  51. Mccarty KF, Feibelman PJ, Loginova E, Bartelt NC (2009) Kinetics and thermodynamics of carbon segregation and grapheme growth on Ru(0001). Carbon 47:1806–1813. https://doi.org/10.1016/j.carbon.2009.03.004

    Article  Google Scholar 

  52. Coraux J, N′Diaye AT, Busse C, Michely T, (2008) Structural coherency of graphene on Ir(111). Nano Lett 8:565–570. https://doi.org/10.1021/nl0728874

    Article  Google Scholar 

  53. Kim KS, Zhao Y, Jang H, Lee SY et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  Google Scholar 

  54. Sutter PW, Flege JI, Sutter EA (2008) Epitaxial Graphene on Ruthenium Nature Materials 7:406–411. https://doi.org/10.1038/nmat2166

    Article  Google Scholar 

  55. Wintterlin J, Bocquet ML (2009) Graphene on metal surfaces. Surf Sci 603:1841–1852. https://doi.org/10.1016/j.susc.2008.08.037

    Article  Google Scholar 

  56. Astruc D (2007) Palladium Nanoparticles as Efficient Green Homogeneous and Heterogeneous Carbon−Carbon Coupling Precatalysts: A Unifying View. Inorg Chem 46:1884. https://doi.org/10.1021/ic062183h

    Article  Google Scholar 

  57. Piao Y, Jang Y, Shokouhimehr M, Lee IS, Hyeon T (2007) Facile Aqueous-Phase Synthesis of Uniform Palladium Nanoparticles of Various Shapes and Sizes. Small 3:255. https://doi.org/10.1002/smll.200600402

    Article  Google Scholar 

  58. Marchini S, Guenther S, Wintterlin J (2007) Scanning tunneling microscopy of graphene on Ru(0001). Phys Rev B 76:075429. https://doi.org/10.1103/PhysRevB.76.075429

    Article  Google Scholar 

  59. Wang B, Guenther S, Wintterlin J, Bocquet ML (2010) Periodicity, work function and reactivity of graphene on Ru(0001) from first principles. New J Phys 12:043041. https://doi.org/10.1088/1367-2630/12/4/043041

    Article  Google Scholar 

  60. Altenburg S, Kröger J, Wang B, Bocquet M-L, Lorente N, Berndt R (2010) Graphene on Ru(0001): Contact Formation and Chemical Reactivity on the Atomic Scale. Phys Rev Lett 105:236101. https://doi.org/10.1103/PhysRevLett.105.236101

    Article  Google Scholar 

  61. Sicot M, Leicht P, Zusan A, Bouvron S, Zander O et al (2012) ACS Nano 6:151. https://doi.org/10.1021/nn203169j

    Article  Google Scholar 

  62. Wang B, Caffio M, Bromley C, Fruechtl H, Schaub R (2010) Coupling Epitaxy, Chemical Bonding, and Work Function at the Local Scale in Transition Metal-Supported Graphene. ACS Nano 4:5773. https://doi.org/10.1021/nn101520k

    Article  Google Scholar 

  63. Voloshina EN, Dedkov YS, Torbruegge S, Thissen A, Fonin M (2012) Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl Phys Lett 100:241606. https://doi.org/10.1063/1.4729549

    Article  Google Scholar 

  64. Coraux J, N’Diaye AT, Engler M, Busse C, Wall D, Buckanie N, Meyer, Heringdorf FJM, Gastel R, Poelsema B and Michely T (2009) Growth of graphene on Ir(111). New J Phys 11:023006 (22pp).

    Google Scholar 

  65. Busse C, Lazic P, Djemour R, Coraux J et al (2011) Graphene on Ir(111): Physisorption with Chemical Modulation. Phys Rev Lett 107:036101. https://doi.org/10.1103/PhysRevLett.107.036101

    Article  Google Scholar 

  66. Starodub E, Bostwick A, Moreschini L et al (2011) In-plane orientation effects on the electronic structure, stability, and Raman scattering of monolayer graphene on Ir(111) Phys Rev B 83:125428. https://doi.org/https://doi.org/10.1103/PhysRevB.83.125428

  67. Kralj M, Pletikosic I, Petrovic M, Pervan P et al (2011) Graphene on Ir(111) characterized by angle-resolved photoemission. Phys Rev B 84:075427. https://doi.org/10.1103/PhysRevB.84.075427

    Article  Google Scholar 

  68. Pletikosic I, Kralj M, Milun M, Pervan P (2011) Finding the bare band: Electron coupling to two phonon modes in potassium-doped graphene on Ir(111). Phys Rev B 85:155447. https://doi.org/10.1103/PhysRevB.85.155447

    Article  Google Scholar 

  69. Land T, Michely T, Behm R, Hemminger J, Comsa G (1992) STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci 264:261. https://doi.org/10.1016/0039-6028(92)90183-7

    Article  Google Scholar 

  70. Sutter P, Sadowski J, Sutter E (2009) Graphene on Pt(111): Growth and substrate interaction. Phys Rev B 80:245411. https://doi.org/10.1103/PhysRevB.80.245411

    Article  Google Scholar 

  71. Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Surface studies by Scanning Tunneling Microscopy. Phys Rev Lett 49:57

    Article  Google Scholar 

  72. Binnig G, Rohrer, (1986) Scanning Tunneling Microscopy. IBM J Res Develop 30:4

    Google Scholar 

  73. Gangopadhyay S, Woolley RAJ, Danza R, Phillips MA, Schulte M, Wang L, Dhanak VR, Moriarty PJ (2009) C60 submonolayers on the Si (111)-(7× 7) surface: Does a mixture of physisorbed and chemisorbed states exist? Surf Sci 603:2896–2901

    Article  Google Scholar 

  74. Du X, Chen F, Chen X, Wu X, Cai Y, Liu X, Wang L (2010) Adsorption geometry of individual fullerene on Si surface at room-temperature. Appl Phys Lett 97:253106. https://doi.org/10.1063/1.3529446

    Article  Google Scholar 

  75. Liu L, Liu S, Chen X, Li C, Ling J, Liu X, Cai Y, Wang L (2013) Switching Molecular Orientation of Individual Fullerene at Room Temperature. SCIENTIFIC REPORTS 3:3062. https://doi.org/10.1038/srep03062

    Article  Google Scholar 

  76. Néel N, Limot L, Krögerand J, Berndt R (2008) Rotation of C60 in a single-molecule contact. PHYSICAL REVIEW B 77:125431. https://doi.org/10.1103/PhysRevB.77.125431

    Article  Google Scholar 

  77. Venema LC, Meunier V, Lambin Ph, Dekker C (2000) Atomic structure of carbon nanotubes from scanning tunneling microscopy. PHYSICAL REVIEW B 61:2991–2996. https://doi.org/10.1103/PhysRevB.61.2991

    Article  Google Scholar 

  78. Furuhashi1 M, Komeda T (2008) Chiral vector determination of carbon nanotubes by observation of interference patterns near the end cap. Phys Rev Lett 101:185503. https://doi.org/10.1103/PhysRevLett.101.185503

  79. Seah C-M, Chai SP, Mohamed AR (2014) Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70:1–21. https://doi.org/10.1016/j.carbon.2013.12.073Get

    Article  Google Scholar 

  80. Batzill M (2012) The surface science of graphene: Metal interfaces CVD synthesis nanoribbons chemical modifications and defects. Surf Sci Rep 67:83–115. https://doi.org/10.1016/j.surfrep.2011.12.001

    Article  Google Scholar 

  81. Gao L, Guest JR, Guisinger NP (2010) Epitaxial Graphene on Cu (111). Nano Lett 10:3512–3516. https://doi.org/10.1021/nl1016706

    Article  Google Scholar 

Download references

Acknowledgements

The author (SG) gratefully acknowledges the instrumental support from Prof. Philip Moriarty of University of Nottingham, UK, for some of the STM images of C60 molecules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashis Gangopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gangopadhyay, S., Sushil (2021). Scanning Tunneling Microscopy (STM) Imaging of Carbon Nanotropes: C60, CNT and Graphene. In: Hazra, A., Goswami, R. (eds) Carbon Nanomaterial Electronics: Devices and Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1052-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1052-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1051-6

  • Online ISBN: 978-981-16-1052-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics