Skip to main content

Proteomics for Understanding the Interaction Between Plant and Rhizospheric Microflora

  • Chapter
  • First Online:
Omics Science for Rhizosphere Biology

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Rhizosphere is a complex system of biological activities of plants and microflora. Interaction between plants and microbes residing in its rhizosphere has been point of interest among the scientific communities for a long time. In-depth knowledge of these interactions is crucial to the current world scenario in context of food availability. Metagenomics and metatranscriptomic studies are being done with the objective elucidate the diversity of culturable and nonculturable microbiome. But this information is incomplete without understanding their functional role in plant–microbiome interaction. Complete proteome represents the ongoing metabolic processes happening in soil at particular time and needs to be studied for knowing the key players in functionality of microbiome. Metaproteomics is emerging tool that sketch the information about entire proteins present in a specific environmental situation at a particular time. It correlates the diversity and functionality of soil microorganisms in both dominant species and at community level. With the help of traditional tools, the development of high-throughput proteomics tools like mass spectrometry, the better understanding of functional aspects of soil complex system has become feasible. However, the progress is little bit slow due to the presence of some bottle neck like presence of various interfering molecules present in the soil samples, scarcity of soil proteome databases, etc. This chapter discusses proteomics tools that are available and review recent studies where the proteomics tools have been applied to decode the underlying processes responsible for differential functioning of soil microbiome in diverse environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  CAS  Google Scholar 

  • Abiraami T, Singh S, Nain L (2020) Soil metaproteomics as a tool for monitoring functional microbial communities: promises and challenges. Rev Environ Sci Biotechnol:1–30

    Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomics 5:112–120

    Article  CAS  Google Scholar 

  • Alberton D, Müller-Santos M, Brusamarello-Santos LCC, Valdameri G, Cordeiro FA, Yates MG, de Oliveira Pedrosa F, de Souza EM (2013) Comparative proteomics analysis of the rice roots colonized by Herbaspirillum seropedicae strain SmR1 reveals induction of the methionine recycling in the plant host. J Proteome Res 12:4757–4768

    Article  CAS  PubMed  Google Scholar 

  • Arzanesh MH, Alikhani H, Khavazi K, Rahimian H, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bona E, Massa N, Novello G, Boatti L, Cesaro P, Todeschini V, Magnelli V, Manfredi M, Marengo E, Mignone F (2019) Metaproteomic characterization of the Vitis vinifera rhizosphere. FEMS Microbiol Ecol 95:fiy204

    CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11

    Article  CAS  Google Scholar 

  • Chen EI, Hewel J, Felding-Habermann B, Yates JR (2006) Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol Cell Proteomics 5:53–56

    Article  CAS  PubMed  Google Scholar 

  • Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL, Hettich RL (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622

    Article  CAS  PubMed  Google Scholar 

  • Cooper B, Campbell KB, Beard HS, Garrett WM, Mowery J, Bauchan GR, Elia P (2018) A proteomic network for symbiotic nitrogen fixation efficiency in Bradyrhizobium elkanii. Mol Plant-Microbe Interact 31:334–343

    Article  CAS  PubMed  Google Scholar 

  • Corthals, G., Gygi, S., Aebersold, R., and Patterson, S. (2000). Identification of proteins by mass spectrometry. In: Proteome research: two-dimensional gel electrophoresis and identification methods. Springer, pp 197–231

    Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  • Faleiro AC, Neto PAV, de Souza TV, Santos M, Arisi ACM (2015) Microscopic and proteomic analysis of Zea mays roots (P30F53 variety) inoculated with Azospirillum brasilense strain FP2. J Crop Sci Biotechnol 18:63–71

    Article  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  • Fenselau C (1997) Peer reviewed: MALDI MS and strategies for protein analysis. Anal Chem 69:661A–665A

    Article  CAS  PubMed  Google Scholar 

  • Ferrari CS, Amaral FP, Bueno JCF, Scariot MC, Valentim-Neto PA, Arisi ACM (2014) Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) roots-bacteria interaction revealed using proteomics. Appl Biochem Biotechnol 174:2267–2277

    Article  CAS  PubMed  Google Scholar 

  • Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R (2002) Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1:47–54

    Article  CAS  PubMed  Google Scholar 

  • Helsens K, Martens L, Vandekerckhove J, Gevaert K (2007) MascotDatfile: an open-source library to fully parse and analyse MASCOT MS/MS search results. Proteomics 7:364–366

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JJ-D, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (2003) Proteolytic cleavage of MLL generates a complex of N-and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 23:186–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibort P, Imai H, Uemura M, Aroca R (2018) Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. J Plant Physiol 220:43–59

    Article  CAS  PubMed  Google Scholar 

  • Issaq HJ, Chan KC, Janini GM, Conrads TP, Veenstra TD (2005) Multidimensional separation of peptides for effective proteomic analysis. J Chromatogr B 817:35–47

    Article  CAS  Google Scholar 

  • Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci 7:955

    Article  PubMed  PubMed Central  Google Scholar 

  • Kislinger T, Emili A (2005) Multidimensional protein identification technology: current status and future prospects. Expert Rev Proteomics 2:27–39

    Article  CAS  PubMed  Google Scholar 

  • Kislinger T, Gramolini AO, MacLennan DH, Emili A (2005) Multidimensional protein identification technology (MudPIT): technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue. J Am Soc Mass Spectrom 16:1207–1220

    Article  CAS  PubMed  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378

    Article  CAS  PubMed  Google Scholar 

  • Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Seo JS, Chung WS, Bae DW, Kim SG (2016) Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16:122–135

    Article  CAS  PubMed  Google Scholar 

  • LaBaer J, Ramachandran N (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9:14–19

    Article  CAS  PubMed  Google Scholar 

  • Laursen RA (1971) Solid-phase Edman degradation: an automatic peptide sequencer. Eur J Biochem 20:89–102

    Article  CAS  PubMed  Google Scholar 

  • Lery LM, Hemerly AS, Nogueira EM, von Krüger WM, Bisch PM (2011) Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant-Microbe Interact 24:562–576

    Article  CAS  PubMed  Google Scholar 

  • Li K, Pidatala VR, Shaik R, Datta R, Ramakrishna W (2014) Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Environ Sci Technol 48:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Wu L, Lin S, Zhang A, Zhou M, Lin R, Wang H, Chen J, Zhang Z, Lin R (2013) Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol 13:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodwig EM, Hosie AH, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie J, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–rhizobium symbiosis. Nature 422:722–726

    Article  CAS  PubMed  Google Scholar 

  • Loh J, Pierson EA, Pierson LS III, Stacey G, Chatterjee A (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290

    Article  CAS  PubMed  Google Scholar 

  • Manikandan R, Karthikeyan G, Raguchander T (2017) Soil proteomics for exploitation of microbial diversity in Fusarium wilt infected and healthy rhizosphere soils of tomato. Physiol Mol Plant Pathol 100:185–193

    Article  CAS  Google Scholar 

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  • Mattarozzi M, Di Zinno J, Montanini B, Manfredi M, Marengo E, Fornasier F, Ferrarini A, Careri M, Visioli G (2020) Biostimulants applied to maize seeds modulate the enzymatic activity and metaproteome of the rhizosphere. Appl Soil Ecol 148:103480

    Article  Google Scholar 

  • Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408

    Article  CAS  PubMed  Google Scholar 

  • Molloy MP, Witzmann FA (2002) Proteomics: technologies and applications. Brief Funct Genomics 1:23–39

    Article  CAS  Google Scholar 

  • Nedelkov D, Nelson RW (2003) Surface plasmon resonance mass spectrometry: recent progress and outlooks. Trends Biotechnol 21:301–305

    Article  CAS  PubMed  Google Scholar 

  • Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu M, Xu Z, Li X, Li Q, Zhang N, Shen Q, Zhang R (2014) Comparative proteomics analysis of Bacillus amyloliquefaciens SQR9 revealed the key proteins involved in in situ root colonization. J Proteome Res 13:5581–5591

    Article  CAS  PubMed  Google Scholar 

  • Quirino B, Candido E, Campos P, Franco O, Krüger R (2010) Proteomic approaches to study plant–pathogen interactions. Phytochemistry 71:351–362

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran N, Larson DN, Stark PR, Hainsworth E, LaBaer J (2005) Emerging tools for real-time label-free detection of interactions on functional protein microarrays. FEBS J 272:5412–5425

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A, Hu Y, LaBaer J (2008) Next-generation high-density self-assembling functional protein arrays. Nat Methods 5:535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H (2004) Quantitative proteomics: a review of different methodologies. Eur J Mass Spectrometry 10:335–348

    Article  CAS  Google Scholar 

  • Rose, A., Stahlberg, E.A., and Meier, I. (2007). Genome-wide identification and comparative analysis of coiled-coil proteins. Scalable computing: practice and experience 8

    Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spandidos A, Rabbitts TH (2002) Sub-proteome differential display: single gel comparison by 2D electrophoresis and mass spectrometry. J Mol Biol 318:21–31

    Article  CAS  PubMed  Google Scholar 

  • Straub D, Yang H, Tsap T, Liu Y, Ludewig U (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. J Exp Bot 64:4603–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabb DL (2015) The SEQUEST family tree. J Am Soc Mass Spectrom 26:1814–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor EB, Williams MA (2010) Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery. Microb Ecol 59:390–399

    Article  CAS  PubMed  Google Scholar 

  • Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  • Van den Bergh G, Arckens L (2005) Recent advances in 2D electrophoresis: an array of possibilities. Expert Rev Proteomics 2:243–252

    Article  PubMed  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  PubMed  Google Scholar 

  • Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Biosci Rep 25:19–32

    Article  CAS  PubMed  Google Scholar 

  • White RA, Borkum MI, Rivas-Ubach A, Bilbao A, Wendler JP, Colby SM, Köberl M, Jansson C (2017) From data to knowledge: the future of multi-omics data analysis for the rhizosphere. Rhizosphere 3:222–229

    Article  Google Scholar 

  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C, Yan JX, Gooley AA, Hughes G, Humphery-Smith I (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14:61–65

    CAS  PubMed  Google Scholar 

  • Wittmann-Liebold B, Graack HR, Pohl T (2006) Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6:4688–4703

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wang H, Zhang Z, Lin R, Zhang Z, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One 6:e20611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarmush ML, Jayaraman A (2002) Advances in proteomic technologies. Annu Rev Biomed Eng 4:349–373

    Article  CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Natale R, Domingues AP, Toleco MR, Siemiatkowska B, Fàbregas N, Fernie AR (2019) Rapid identification of protein-protein interactions in plants. Curr Protocol Plant Biol 4:e20099

    Article  CAS  Google Scholar 

  • Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 1:117–123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Namdeo Pudake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pudake, R.N., Pallavi, Pundir, M.S. (2021). Proteomics for Understanding the Interaction Between Plant and Rhizospheric Microflora. In: Pudake, R.N., Sahu, B.B., Kumari, M., Sharma, A.K. (eds) Omics Science for Rhizosphere Biology. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0889-6_7

Download citation

Publish with us

Policies and ethics