Skip to main content

Multi-Objective Genetic Algorithm for Hyperspectral Image Analysis

  • Conference paper
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 225))

Abstract

The main objective of hyperspectral Image Classification is to group pixels into spectral classes, where each class having a unique label representing specific information in the image. The classification can be done using methods categorized as supervised and unsupervised. The contrast of hyperspectral images is degraded if there is any disturbance of the transmission medium. This disturbance degrades the quality of the image generated by the sensor, which effects the classification accuracy. In this paper, Genetic Algorithm (GA) is used for hyperspectral image analysis. The algorithm is used in contrast enhancement, dimensionality reduction, and classification. This dimensionality reduction will remove less informative bands, decrease storage space, computational load, and communication bandwidth. The experimental results show the improvement of accuracy in classifying Indian Pines and Pavia University datasets

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harikiran, J. et.al.: Fast clustering algorithms for segmentation of microarray images. IJSER 5(10), 569–574 (2014)

    Google Scholar 

  2. Saichandana, B. et al.: Image fusion in hyperspectral image classification using genetic algorithm. IJEECS 2(3), 703–711 (2016)

    Google Scholar 

  3. Saichandana, B., et al.: Dimensionality reduction and classification of hyperspectral images using genetic algorithm. IJEECS 3(3), 503–511 (2016)

    Article  Google Scholar 

  4. Holland, J.: Adaptation in natural and artificial systems. Univ. of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  5. Zeiler, A. et al.: Empirical mode decomposition—an introduction. In: Proceedings of IEEE IJCNN, pp. 1–8 (2010)

    Google Scholar 

  6. Yin, J., et al.: A new dimensionality reduction algorithm for hyperspectral image using evolutionary strategy. IEEE Trans. Industr. Inform. 8(4), 935–943 (2012)

    Article  Google Scholar 

  7. Deb, K. et al.: A computationally efficient evolutionary algorithm for real parameter optimization. IEEE Trans. Evol. Comp. 10(4), 371–395 (1998)

    Google Scholar 

  8. Du, Q. et al.: Similarity based unsupervised band selection for hyperspectral image analysis. IEEE Tran. Geos. RS Lett. 5(4), 564–568 (2008)

    Google Scholar 

  9. Gharaati, E. et al.: A new band selection method for hyperspectral images based on constrained optimization. In: Proceedings of IEEE ICIKT, pp. 1–6 (2015)

    Google Scholar 

  10. Hongjun, Su., Qian, Du., Peijun, Du.: Hyperspectral image visualization using band selection. IEEE JSTAEORS 10(4), 2647–2658 (2013)

    Google Scholar 

  11. Tarabalka, Y., et al.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geos. Remote Sens. 47(5), 2973–2987 (2009)

    Article  Google Scholar 

  12. Zhang, H., et al.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geo. RS 52(8), 4729–4743 (2014)

    Article  Google Scholar 

  13. Ngatchou, P. et al.: Pareto multi objective optimization. In: Proceedings of 13th ICISAPS. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subba Reddy, T., Harikiran, J., Sai Chandana, B. (2021). Multi-Objective Genetic Algorithm for Hyperspectral Image Analysis. In: Satapathy, S.C., Bhateja, V., Favorskaya, M.N., Adilakshmi, T. (eds) Smart Computing Techniques and Applications. Smart Innovation, Systems and Technologies, vol 225. Springer, Singapore. https://doi.org/10.1007/978-981-16-0878-0_61

Download citation

Publish with us

Policies and ethics