Skip to main content

Risk Detection in Wireless Body Sensor Networks for Health Monitoring Using Hybrid Deep Learning

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 756))

Abstract

The Internet of Things (IoT) idea has arisen as interconnected components of the healthcare tracking facilities of smart linked healthcare networks. Hard sensor-based data aggregation with the help of devices in the form of wearables or intrusive samples attached with the acquisition of soft sensors like crowd sensor results in the aggregated sensor data being concealed in patterns. This problem is tackled through several secret stages of interpretation of deep learning techniques. In this research work, we proposed hybrid deep learning (HDL) techniques to develop estimation and enhance quality of smart health services on health monitoring data. We also showed a detailed comparison of methods on the basis of health surveillance types. Hence, our proposed models work for risk detection in health information which will help us to increase the efficiency of existing healthcare industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • L. He, C. Cao, Automated depression analysis using convolu- tional neural networks from speech. Journal of Biomedical Informatics 83, 103–111 (2018)

    Article  Google Scholar 

  • Yang, L., Jiang, D., Xia, X., Pei, E., Oveneke, M.C. and Sahli, H., (2017). Multimodal Measurement of Depression Using Deep Learning Models. In Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge (AVEC ‘17). Association for Computing Machinery, New York, NY, USA, 53–59. DOI:https://doi.org/10.1145/3133944.3133948

  • Cen, L., Yu, Z. L., Kluge, T., & Ser, W. (2018). Automatic System for Obstructive Sleep Apnea Events Detection Using Convolutional Neural Network. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/embc.2018.8513363

  • N. Yamanakkanavar, J.Y. Choi, B. Lee, MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer’s Disease: A Survey. Sensors 2020(20), 3243 (2020)

    Article  Google Scholar 

  • Jo, T., Nho K., Saykin, A.J., (2019). Deep Learning in Alzheimer’s Dis- ease: Diagnostic Classification and Prognostic Prediction Using Neuroi- maging Data. Front Aging Neurosci. 2019 Aug 20;11:220. https://doi.org/10.3389/fnagi.2019.00220. PMID: 31481890; PMCID: PMC6710444.

  • Siar, M., &Teshnehlab, M. (2019). Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm. 2019 9th Interna- tional Conference on Computer and Knowledge Engineering (ICCKE). https://doi.org/10.1109/iccke48569.2019.8964846

  • Ahmed, O., &Brifcani, A. (2019). Gene Expression Classification Based on Deep Learning. 2019 4th Scientific International Conference Najaf (SICN). https://doi.org/10.1109/sicn47020.2019.9019357

  • Nazari, I., Tayara, H., & Chong, K. T. (2018). Branch Point Selection in RNA Splicing Using Deep Learning. IEEE Access, 1–1. doi:10.1109/access.2018.2886569

    Google Scholar 

  • Tazawa, Y., Liang, K.C., Yoshimura, M., Kitazawa, M., Kaise, Y., Ta- kamiya, A., Kishi, A., Horigome, T., Mitsukura, Y., Mimura, M., Ki- shimoto, T., (2020). Evaluating depression with multimodal wristband- type wearable device: screening and assessing patient severity utilizing machine-learning. Heliyon. 6. e03274. 10.1016/j.heliyon.2020.e03274

    Google Scholar 

  • McGinnis, R. S., McGinnis, E. W., Hruschak, J., Lopez-Duran, N. L., Fitzgerald, K., Rosenblum, K. L., &Muzik, M. (2018). Wearable sensors and machine learning diagnose anxiety and depression in young children. 2018 IEEE EMBS International Conference on Biomedical & Health In- formatics (BHI). https://doi.org/10.1109/bhi.2018.8333455

  • G.B. Papini, P. Fonseca, M.M. van Gilst et al., Wearable moni- toring of sleep-disordered breathing: estimation of the apnea–hypopnea index using wrist-worn reflective photoplethysmography. Sci Rep 10, 13512 (2020). https://doi.org/10.1038/s41598-020-69935-7

    Article  Google Scholar 

  • G. Surrel, A. Aminifar, F. Rincón, S. Murali, D. Atienza, Online Ob- structive Sleep Apnea Detection on Medical Wearable Sensors. IEEE Transactions on Biomedical Circuits and Systems 12(4), 762–773 (2018). https://doi.org/10.1109/TBCAS.2018.2824659

    Article  Google Scholar 

  • Zhou, P., Huang, L., Zhao, Q., Xiao, W., Li, S., (2019). A Domestic Di- agnosis System for Early Restless Legs Syndrome Based on Deep Learn- ing. Zhongguo Yi Liao Qi XieZaZhi. 2019 Mar 30;43(2):79-82. Chinese. https://doi.org/10.3969/j.issn.1671-7104.2019.02.001. PMID: 30977599.

  • Rajawat A.S., Upadhyay P., Upadhyay A. (2021) Novel Deep Learning Model for Uncertainty Prediction in Mobile Computing. In: Arai K., Kapoor S., Bhatia R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol 1250. Springer, Cham.https://doi.org/10.1007/978-3-030-55180-3_49

  • K. Barhanpurkar, A. S. Rajawat, P. Bedi and O. Mohammed, “Detection of Sleep Apnea & Cancer Mutual Symptoms Using Deep Learning Tech- niques,” 2020 Fourth International Conference on I-SMAC (IoT in So- cial, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 821-828, https://doi.org/10.1109/i-smac49090.2020.9243488.

  • A. Singh Rajawat and S. Jain, “Fusion Deep Learning Based on Back Propagation Neural Network for Personalization,” 2nd International Con- ference on Data, Engineering and Applications (IDEA), Bhopal, India, 2020, pp. 1-7, https://doi.org/10.1109/idea49133.2020.9170693.

  • A. S. Rajawat, O. Mohammed and P. Bedi, “FDLM: Fusion Deep Learn- ing Model for Classifying Obstructive Sleep Apnea and Type 2 Diabe- tes,” 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 835- 839, https://doi.org/10.1109/i-smac49090.2020.9243553.

  • A. S. Rajawat and A. R. Upadhyay, “Web Personalization Model Using Modified S3VM Algorithm For developing Recommendation Process,” 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 2020, pp. 1-6, https://doi.org/10.1109/idea49133.2020.9170701.

  • Sampurna Mandal;Swagatam Biswas;Valentina E. Balas;Rabindra Nath Shaw; Ankush Ghosh, “Motion Prediction for Autonomous Vehicles from Lyft Dataset using Deep Learning” 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA) 30-31 Oct. 2020, Page(s):768 – 773, https://doi.org/10.1109/iccca49541.2020.9250790

  • Sampurna Mandal;Valentina E. Balas;Rabindra Nath Shaw; Ankush Ghosh, “Prediction Analysis of Idiopathic Pulmonary Fibrosis Progression from OSIC Dataset” 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), 2-4 Oct. 2020,Page(s):861 – 865, https://doi.org/10.1109/gucon48875.2020.9231239

  • Kumar M., Shenbagaraman V.M., Shaw R.N., Ghosh A. (2021) Predictive Data Analysis for Energy Management of a Smart Factory Leading to Sustainability. In: Favorskaya M., Mekhilef S., Pandey R., Singh N. (eds) Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol 661. Springer, Singapore. https://doi.org/10.1007/978-981-15-4692-1_58

  • AbdallaAlameen, Ashu Gupta, Optimization Driven Deep Learning Ap- proach for Health Monitoring and Risk Assessment in Wireless Body Sensor Networks

    Google Scholar 

  • R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R.X. Gao, Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing 115, 213–237 (2019). https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  Google Scholar 

  • Xia, M., Zheng, X., Imran, M., & Shoaib, M. (2020). Data-driven prog- nosis method using hybrid deep recurrent neural network. Applied Soft Computing, 106351. doi:10.1016/j.asoc.2020.106351

    Google Scholar 

  • L. Ding, W. Fang, H. Luo, P.E.D. Love, B. Zhong, X. Ouyang, A deep hybrid learning model to detect unsafe behavior: Integrat- ing convolution neural networks and long short-term memory. Automa- tion in Construction 86, 118–124 (2018). https://doi.org/10.1016/j.autcon.2017.11.002

    Article  Google Scholar 

  • Jones, V., Gay, V., &Leijdekkers, P. (2010). Body Sensor Networks for Mobile Health Monitoring: Experience in Europe and Australia. 2010 Fourth International Conference on Digital Soci- ety. https://doi.org/10.1109/icds.2010.41

  • A. Alameen, A. Gupta, Optimization Driven Deep Learning Approach for Health Monitoring and Risk Assessment in Wireless Body Sensor Networks. International Journal of Business Data Communications and Networking (IJBDCN) 16(1), 70–93 (2020). https://doi.org/10.4018/IJBDCN.2020010105

    Article  Google Scholar 

  • X. Liu, M. Zhao, A. Liu, K.K.L. Wong, Adjusting for- warder nodes and duty cycle using packet aggregation routing for body sensor networks. Information Fusion 53, 183–195 (2020). https://doi.org/10.1016/j.inffus.2019.06.020

    Article  Google Scholar 

  • Chen, H., Wang, J., Dong, X., & Zhao, C. (2020). Security design of ECG telemonitoring systems. 2020 International Conference on Computer Engineering and Application (ICCEA). https://doi.org/10.1109/iccea50009.2020.00154

  • S.J. Hussain, M. Irfan, N.Z. Jhanjhi, K. Hussain, M. Humayun, Performance Enhancement in Wireless Body Area Networks with Secure Com- munication. Wireless Personal Communications (2020). https://doi.org/10.1007/s11277-020-07702-7

    Article  Google Scholar 

  • Noseworthy, P. A., Attia, Z. I., Brewer, L. C., Hayes, S. N., Yao, X., Kapa, S., … Lopez-Jimenez, F. (2020). Assessing and Mitigating Bias in Medical Artificial Intelligence: The Effects of Race and Ethnicity on a Deep Learning Model for ECG Analysis. Circulation: Arrhythmia and Electrophysiology. https://doi.org/10.1161/circep.119.007988

  • Shankar, K., Zhang, Y., Liu, Y., Wu, L., & Chen, C.-H. (2020). Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification. IEEE Access, 1–1. doi:10.1109/access.2020.3005152

    Google Scholar 

  • Jiang, H., Yang, K., Gao, M., Zhang, D., Ma, H., & Qian, W. (2019). An Interpretable Ensemble Deep Learning Model for Dia- betic Retinopathy Disease Classification. 2019 41st Annual Inter- national Conference of the IEEE Engineering in Medicine and Bi- ology Society (EMBC). https://doi.org/10.1109/embc.2019.8857160

  • X. Li, L. Shen, M. Shen, F. Tan, C.S. Qiu, Deep learning based early stage diabetic retinopathy detection using optical coherence tomography. Neurocomputing (2019). https://doi.org/10.1016/j.neucom.2019.08.079

    Article  Google Scholar 

  • F. Ali, S. El-Sappagh, S.M.R. Islam, D. Kwak, A. Ali, M. Imran, K.-S. Kwak, A Smart Healthcare Monitoring System for Heart Disease Prediction Based On Ensemble Deep Learning and Feature Fu- sion. Information Fusion (2020). https://doi.org/10.1016/j.inffus.2020.06.008

    Article  Google Scholar 

  • Rathore, H., Al-Ali, A., Mohamed, A., Du, X., &Guizani, M. (2019). A Novel Deep Learning Strategy for Classifying Different Attack Patterns for Deep Brain Implants. IEEE Access, 1–1. doi:10.1109/access.2019.2899558

    Google Scholar 

  • S. Dash, S.K. Shakyawar, M. Sharma, Big data in healthcare: management, analysis and future prospects. J Big Data 6, 54 (2019). https://doi.org/10.1186/s40537-019-0217-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajawat, A.S., Barhanpurkar, K., Shaw, R.N., Ghosh, A. (2021). Risk Detection in Wireless Body Sensor Networks for Health Monitoring Using Hybrid Deep Learning. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds) Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol 756. Springer, Singapore. https://doi.org/10.1007/978-981-16-0749-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0749-3_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0748-6

  • Online ISBN: 978-981-16-0749-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics