Skip to main content

Deciphering the Role of Epigenetic Reprogramming in Host-Pathogen Interactions

  • Chapter
  • First Online:
Integrated Omics Approaches to Infectious Diseases

Abstract

The success of a pathogen within the host depends on various extrinsic factors that work in a synergistic mechanism to promote pathogenesis. One such factor is driven by the changes observed within the host genome, providing survival and establishment of pathogens inside the host. Pathogens are also known for establishing their intracellular niche within the host by mimicking the host enzymes and immune system for survival. Understanding the strategies used by pathogens to intervene in host genetic machinery for pathogenesis is important for creating successful targets and personalized drugs to counterbalance their effects. Accumulation of omics data and simultaneous development of bioinformatics analysis tools have allowed researchers to understand the interplay between prokaryotic and eukaryotic cells through the multi-omics approach. This permits a better understanding of diseases associated with host-parasite interactions and subsequent development of personalized medicines as therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denzer L, Schroten H, Schwerk C (2020) From gene to protein-how bacterial virulence factors manipulate host gene expression during infection. Int J Mol Sci 21(10):3730. https://doi.org/10.3390/ijms21103730. Published 2020 May 25

    Article  CAS  PubMed Central  Google Scholar 

  2. Garcia BA (2009) Mass spectrometric analysis of histone variants and post-translational modifications. Front Biosci 1:142–153. PMID: 19482690

    Article  Google Scholar 

  3. Yin L, Chung WO (2011) Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol 4(4):409–419. https://doi.org/10.1038/mi.2010.83. Epub 2011 Jan 19. PMID: 21248725; PMCID: PMC3118861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rennoll-Bankert KE, Dumler JS (2012) Lessons from Anaplasma phagocytophilum: chromatin remodeling by bacterial effectors. Infect Disord Drug Targets 12(5):380–387. https://doi.org/10.2174/187152612804142242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grabiec AM, Potempa J (2018) Epigenetic regulation in bacterial infections: targeting histone deacetylases. Crit Rev Microbiol 44(3):336–350. https://doi.org/10.1080/1040841X.2017.1373063. Epub 2017 Oct 3. PMID: 28971711; PMCID: PMC6109591

    Article  CAS  PubMed  Google Scholar 

  6. Bandyopadhaya A, Tsurumi A, Maura D, Jeffrey KL, Rahme LG (2016) A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming. Nat Microbiol 1:16174. https://doi.org/10.1038/nmicrobiol.2016.174. Published 2016 Oct 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Niller HH, Masa R, Venkei A, Mészáros S, Minarovits J (2017) Pathogenic mechanisms of intracellular bacteria. Curr Opin Infect Dis 30(3):309–315. https://doi.org/10.1097/QCO.0000000000000363. PMID: 28134679

    Article  PubMed  Google Scholar 

  8. Niller HH, Wolf H, Minarovits J (2008) Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity 41(4):298–328. https://doi.org/10.1080/08916930802024772. PMID: 18432410

    Article  CAS  PubMed  Google Scholar 

  9. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. https://doi.org/10.1016/j.cell.2007.02.005. PMID: 17320507

    Article  CAS  PubMed  Google Scholar 

  10. Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499. https://doi.org/10.1146/annurev-biochem-061809-175347. PMID: 21529160

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Y, Kim J, Yuan X, Braun T (2011) Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res 109(9):1067–1081. https://doi.org/10.1161/CIRCRESAHA.111.243709. PMID: 21998298

    Article  CAS  PubMed  Google Scholar 

  12. Willbanks A, Leary M, Greenshields M, Tyminski C, Heerboth S, Lapinska K, Haskins K, Sarkar S (2016) The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet Epigenet 8:25–36. https://doi.org/10.4137/GEG.S31863. PMID: 27512339; PMCID: PMC4973776

  13. Gluckman PD, Hanson MA, Beedle AS (2007) Non-genomic transgenerational inheritance of disease risk. Bioessays 29(2):145–154. https://doi.org/10.1002/bies.20522. PMID: 17226802

    Article  CAS  PubMed  Google Scholar 

  14. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. https://doi.org/10.1038/ng1089. PMID: 12610534

    Article  CAS  PubMed  Google Scholar 

  15. Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK (2012) Environmental epigenetics and its implication on disease risk and health outcomes [published correction appears in ILAR J. 2017 Dec 15;58(3):413]. ILAR J 53(3–4):289–305. https://doi.org/10.1093/ilar.53.3-4.289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97. https://doi.org/10.1016/j.tibs.2005.12.008. Epub 2006 Jan 5. PMID: 16403636

    Article  CAS  PubMed  Google Scholar 

  17. Chen ZX, Riggs AD (2011) DNA methylation and demethylation in mammals. J Biol Chem 286(21):18347–18353. https://doi.org/10.1074/jbc.R110.205286. Epub 2011 Mar 24. PMID: 21454628; PMCID: PMC3099650

  18. Sajjanar B, Trakooljul N, Wimmers K, Ponsuksili S (2019) DNA methylation analysis of porcine mammary epithelial cells reveals differentially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics 20(1):623. https://doi.org/10.1186/s12864-019-5976-7. Published 2019 July 31

  19. Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M, Arii K, Kaneda A, Tsukamoto T, Tatematsu M, Tamura G, Saito D, Sugimura T, Ichinose M, Ushijima T (2006) High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12(3 Pt 1):989–995. https://doi.org/10.1158/1078-0432.CCR-05-2096. PMID: 16467114

    Article  CAS  PubMed  Google Scholar 

  20. Ding SZ, Goldberg JB, Hatakeyama M (2010) Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol 6(5):851–862. https://doi.org/10.2217/fon.10.37. PMID: 20465395; PMCID: PMC2882595

  21. Ushijima T, Hattori N (2012) Molecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res 18(4):923–929. https://doi.org/10.1158/1078-0432.CCR-11-2011. Epub 2011 Dec 28. PMID: 22205689

    Article  CAS  PubMed  Google Scholar 

  22. Tolg C, Sabha N, Cortese R, Panchal T, Ahsan A, Soliman A, Aitken KJ, Petronis A, Bägli DJ (2011) Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells. Lab Invest 91(6):825–836. https://doi.org/10.1038/labinvest.2010.197. Epub 2011 Jan 17. PMID: 21242958

    Article  CAS  PubMed  Google Scholar 

  23. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45. https://doi.org/10.1038/47412. PMID: 10638745

    Article  CAS  PubMed  Google Scholar 

  24. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2(12):a010272. https://doi.org/10.1101/cshperspect.a010272. Published 2012 Dec 1

  25. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463. https://doi.org/10.1038/nature02625. PMID: 15164071

    Article  CAS  PubMed  Google Scholar 

  26. Hayakawa T, Nakayama J (2011) Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011:129383. https://doi.org/10.1155/2011/129383. Epub 2010 Oct 26. PMID: 21049000; PMCID: PMC2964911

  27. Yaseen I, Kaur P, Nandicoori VK, Khosla S (2015) Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 6:8922. https://doi.org/10.1038/ncomms9922. PMID: 26568365

    Article  CAS  PubMed  Google Scholar 

  28. Dong W, Hamon MA (2020) Revealing eukaryotic histone-modifying mechanisms through bacterial infection. Semin Immunopathol 42(2):201–213. https://doi.org/10.1007/s00281-019-00778-9. Epub 2020 Feb 4. PMID: 32020336

    Article  CAS  PubMed  Google Scholar 

  29. Li T, Lu Q, Wang G, Xu H, Huang H, Cai T, Kan B, Ge J, Shao F (2013) SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep 14(8):733–740. https://doi.org/10.1038/embor.2013.86. Epub 2013 June 25. PMID: 23797873; PMCID: PMC3736128

  30. Morlando M, Fatica A (2018) Alteration of epigenetic regulation by long noncoding RNAs in cancer. Int J Mol Sci 19(2):570. https://doi.org/10.3390/ijms19020570. Published 2018 Feb 14

  31. Amaral PP, Dinger ME, Mattick JS (2013) Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 12(3):254–278. https://doi.org/10.1093/bfgp/elt016. PMID: 23709461

    Article  CAS  PubMed  Google Scholar 

  32. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. https://doi.org/10.1038/nrg.2015.10. PMID: 26666209

    Article  CAS  PubMed  Google Scholar 

  33. Chen J, Wang Y, Wang C, Hu JF, Li W (2020) LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front Genet 11:277. https://doi.org/10.3389/fgene.2020.00277. PMID: 32296461; PMCID: PMC7137347

  34. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12. https://doi.org/10.4161/epi.27473. PMID: 24739571; PMCID: PMC3928183

  35. Gong H, Vu GP, Bai Y, Chan E, Wu R, Yang E, Liu F, Lu S (2011) A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 7(9):e1002120. https://doi.org/10.1371/journal.ppat.1002120. Epub 2011 Sept 15. PMID: 21949647; PMCID: PMC3174252

  36. Gao D, Zhang Y, Liu R, Fang Z, Lu C (2019) EsR240, a non-coding sRNA, is required for the resistance of Edwardsiella tarda to stresses in macrophages and for virulence. Vet Microbiol 231:254–263. https://doi.org/10.1016/j.vetmic.2019.03.023. Epub 2019 Mar 22. PMID: 30955819

    Article  CAS  PubMed  Google Scholar 

  37. Denzer L, Schroten H, Schwerk C (2020) From gene to protein-how bacterial virulence factors manipulate host gene expression during infection. Int J Mol Sci 21(10):3730. https://doi.org/10.3390/ijms21103730. PMID: 32466312; PMCID: PMC7279228

  38. Marinus MG (1996) Methylation of DNA in Escherichia coli and Salmonella. Cell Mol Biol 782–791

    Google Scholar 

  39. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A et al (2016) The epigenomic landscape of prokaryotes. PLoS Genet 12:e1005854

    Google Scholar 

  40. Adhikari S, Curtis PD (2016) DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 40:575–591

    Article  CAS  Google Scholar 

  41. Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ (1999) An essential role for DNA adenine methylation in bacterial virulence. Science 284:967–970

    Google Scholar 

  42. Garcia-Del Portillo F, Pucciarelli MG, Casadesus J (1999) DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc Natl Acad Sci USA 96:11578–11583

    Article  CAS  Google Scholar 

  43. Bickle TA, Krüger DH (1993) Biology of DNA restriction. Microbiol Rev 57:434–450

    Google Scholar 

  44. Vasu K, Nagaraja V (2013) Diverse functions of restriction-modification systems in addition to cellular defence. Microbiol Mol Biol Rev 77:53–72

    Google Scholar 

  45. De Ste Croix M et al (2017) Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol Rev 41:S3–S15

    Article  Google Scholar 

  46. Srikhanta YN, Gorrell RJ, Power PM, Tsyganov K, Boitano M, Clark TA, Korlach J, Hartland EL, Jennings MP, Kwok T (2017) Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci Rep 7(1):16140. https://doi.org/10.1038/s41598-017-15721-x. PMID: 29170397; PMCID: PMC5700931

  47. De Bolle X et al (2000) The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol Microbiol 35:211–222

    Google Scholar 

  48. de Vries N et al (2002) Transcriptional phase variation of a type III restriction-modification system in Helicobacter pylori. J Bacteriol 184:6615–6623

    Google Scholar 

  49. van der Woude MW, Henderson IR (2008) Regulation and function of Ag43 (flu). Annu Rev Microbiol 62:153–169. https://doi.org/10.1146/annurev.micro.62.081307.162938. PMID: 18785838

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Zhang JR (2019) Phase variation of Streptococcus pneumoniae. Microbiol Spectr 7(1). https://doi.org/10.1128/microbiolspec.GPP3-0005-2018. PMID: 30737916

  51. Anjuwon-Foster BR, Tamayo R (2018) Phase variation of Clostridium difficile virulence factors. Gut Microbes 9(1):76–83. https://doi.org/10.1080/19490976.2017.1362526. Epub 2017 Sept 21. Erratum for: Addendum to: Anjuwon-Foster BR, Tamayo R (2017) A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet 13(3):e1006701. PMID: 28806147; PMCID: PMC5914908

  52. Hilton T, Rosche T, Froelich B, Smith B, Oliver J (2006) Capsular polysaccharide phase variation in Vibrio vulnificus. Appl Environ Microbiol 72(11):6986–6993. https://doi.org/10.1128/AEM.00544-06. Epub 2006 Aug 25. PMID: 16936057; PMCID: PMC1636181

  53. Weiser JN, Love JM, Moxon ER (1989) The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59(4):657–665. https://doi.org/10.1016/0092-8674(89)90011-1. PMID: 2479481

    Article  CAS  PubMed  Google Scholar 

  54. Brodsky IE, Medzhitov R (2009) Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11(5):521–526. https://doi.org/10.1038/ncb0509-521. PMID: 19404331

    Article  CAS  PubMed  Google Scholar 

  55. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282(5389):754–759. https://doi.org/10.1126/science.282.5389.754. PMID: 9784136

    Article  CAS  PubMed  Google Scholar 

  56. Klemm P, Roos V, Ulett GC, Svanborg C, Schembri MA (2006) Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect Immun 74(1):781–785. https://doi.org/10.1128/IAI.74.1.781-785.2006. PMID: 16369040; PMCID: PMC1346676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dobrindt U, Zdziarski J, Salvador E, Hacker J (2010) Bacterial genome plasticity and its impact on adaptation during persistent infection. Int J Med Microbiol 300(6):363–366. https://doi.org/10.1016/j.ijmm.2010.04.010. Epub 2010 May 7. PMID: 20452279

    Article  PubMed  Google Scholar 

  58. Schmeck B, Beermann W, van Laak V, Zahlten J, Opitz B, Witzenrath M, Hocke AC, Chakraborty T, Kracht M, Rosseau S, Suttorp N, Hippenstiel S (2005) Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification. J Immunol 175(5):2843–2850. https://doi.org/10.4049/jimmunol.175.5.2843. PMID: 16116170

    Article  CAS  PubMed  Google Scholar 

  59. Opitz B, Püschel A, Beermann W, Hocke AC, Förster S, Schmeck B, van Laak V, Chakraborty T, Suttorp N, Hippenstiel S (2006) Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176(1):484–490. https://doi.org/10.4049/jimmunol.176.1.484. PMID: 16365441

    Article  CAS  PubMed  Google Scholar 

  60. Haller D, Holt L, Kim SC, Schwabe RF, Sartor RB, Jobin C (2003) Transforming growth factor-beta 1 inhibits non-pathogenic Gram negative bacteria-induced NF-kappa B recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J Biol Chem 278(26):23851–23860. https://doi.org/10.1074/jbc.M300075200. Epub 2003 Apr 2. PMID: 12672795

    Article  CAS  PubMed  Google Scholar 

  61. Slevogt H, Schmeck B, Jonatat C, Zahlten J, Beermann W, van Laak V, Opitz B, Dietel S, N’Guessan PD, Hippenstiel S, Suttorp N, Seybold J (2006) Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-kappaB activation and histone deacetylase activity reduction. Am J Physiol Lung Cell Mol Physiol 290(5):L818–L826. https://doi.org/10.1152/ajplung.00428.2005. Epub 2006 Jan 6. PMID: 16399788

    Article  CAS  PubMed  Google Scholar 

  62. Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315(5814):1000–1003. https://doi.org/10.1126/science.1138960. Erratum in: Science 2007 July 6;317(5834):43. PMID: 17303758

    Article  CAS  PubMed  Google Scholar 

  63. Brennan DF, Barford D (2009) Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases. Trends Biochem Sci 34(3):108–114. https://doi.org/10.1016/j.tibs.2008.11.005. Epub 2009 Feb 21. PMID: 19233656

    Article  CAS  PubMed  Google Scholar 

  64. Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268(5619):462–464. https://doi.org/10.1038/268462a0. PMID: 268489

    Article  CAS  PubMed  Google Scholar 

  65. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13(6):1435–1448. https://doi.org/10.1110/ps.03554604. PMID: 15152081; PMCID: PMC2279977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park J, Kim KJ, Choi KS, Grab DJ, Dumler JS (2004) Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell Microbiol 6(8):743–751. https://doi.org/10.1111/j.1462-5822.2004.00400.x. PMID: 15236641

    Article  CAS  PubMed  Google Scholar 

  67. Zhu B, Nethery KA, Kuriakose JA, Wakeel A, Zhang X, McBride JW (2009) Nuclear translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific adenine-rich motif of host promoter and intronic Alu elements. Infect Immun 77(10):4243–4255. https://doi.org/10.1128/IAI.00376-09. Epub 2009 Aug 3. PMID: 19651857; PMCID: PMC2747939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J (2019) A review of methods for the detection of pathogenic microorganisms. Analyst 144:396–411

    Article  CAS  Google Scholar 

  69. Schrader KN, Fernandez-Castro A, Cheung WK, Crandall CM, Abbott SL (2008) Evaluation of commercial antisera for Salmonella serotyping. J Clin Microbiol 46(2):685–688. https://doi.org/10.1128/JCM.01808-07. Epub 2007 Dec 19. PMID: 18094130; PMCID: PMC2238139

    Article  PubMed  Google Scholar 

  70. Prager R, Strutz U, Fruth A, Tschäpe H (2003) Subtyping of pathogenic Escherichia coli strains using flagellar (H)-antigens: serotyping versus fliC polymorphisms. Int J Med Microbiol 292(7-8):477–486. https://doi.org/10.1078/1438-4221-00226. PMID: 12635930

    Article  CAS  PubMed  Google Scholar 

  71. Meyer C, Stolle A, Fredriksson-Ahomaa M (2011) Comparison of broth microdilution and disk diffusion test for antimicrobial resistance testing in Yersinia enterocolitica 4/O:3 strains. Microb Drug Resist 17(3):479–484. https://doi.org/10.1089/mdr.2011.0012. Epub 2011 May 13. PMID: 21568753

    Article  CAS  PubMed  Google Scholar 

  72. Lee M, Chung HS (2015) Different antimicrobial susceptibility testing methods to detect ertapenem resistance in Enterobacteriaceae: VITEK2, MicroScan, Etest, disk diffusion, and broth microdilution. J Microbiol Methods 112:87–91. https://doi.org/10.1016/j.mimet.2015.03.014. Epub 2015 Mar 17. PMID: 25794901

    Article  CAS  PubMed  Google Scholar 

  73. Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, Hamilton B, Venter D (2012) Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol 50(9):2918–2931. https://doi.org/10.1128/JCM.01000-12. Epub 2012 June 27. PMID: 22740710; PMCID: PMC3421795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Outhred AC, Jelfs P, Suliman B, Hill-Cawthorne GA, Crawford AB, Marais BJ, Sintchenko V (2015) Added value of whole-genome sequencing for management of highly drug-resistant TB. J Antimicrob Chemother 70(4):1198–1202. https://doi.org/10.1093/jac/dku508. Epub 2014 Dec 9. PMID: 25492392; PMCID: PMC4356205

    Article  CAS  PubMed  Google Scholar 

  75. Dallman TJ, Byrne L, Launders N, Glen K, Grant KA, Jenkins C (2015) The utility and public health implications of PCR and whole genome sequencing for the detection and investigation of an outbreak of Shiga toxin-producing Escherichia coli serogroup O26:H11. Epidemiol Infect 143(8):1672–1680. https://doi.org/10.1017/S0950268814002696. Epub 2014 Oct 15. PMID: 25316375

    Article  CAS  PubMed  Google Scholar 

  76. Lowe AM, Beattie DT, Deresiewicz RL (1998) Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol Microbiol 27(5):967–976. https://doi.org/10.1046/j.1365-2958.1998.00741.x. PMID: 9535086

    Article  CAS  PubMed  Google Scholar 

  77. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P, Brisse S, Struelens M (2007) European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group on Epidemiological Markers (ESGEM). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect 13(Suppl 3):1–46. https://doi.org/10.1111/j.1469-0691.2007.01786.x. PMID: 17716294

    Article  PubMed  Google Scholar 

  78. Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40(1):1–9. https://doi.org/10.1016/S0928-8244(03)00309-2. PMID: 14734180

    Article  CAS  PubMed  Google Scholar 

  79. Saber MM, Shapiro BJ (2020) Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes. Microb Genom 6(3):e000337. https://doi.org/10.1099/mgen.0.000337

    Article  PubMed Central  Google Scholar 

  80. Farhat MR, Freschi L, Calderon R, Ioerger T, Snyder M, Meehan CJ, de Jong B, Rigouts L, Sloutsky A, Kaur D, Sunyaev S, van Soolingen D, Shendure J, Sacchettini J, Murray M (2019) GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nat Commun 10(1):2128. https://doi.org/10.1038/s41467-019-10110-6. PMID: 31086182; PMCID: PMC6513847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Salehizadeh H, Shojaosadati SA (2001) Extracellular biopolymeric flocculants. Recent trends and biotechnological importance. Biotechnol Adv 19(5):371–385. https://doi.org/10.1016/s0734-9750(01)00071-4. PMID: 14538073

    Article  CAS  PubMed  Google Scholar 

  82. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874. https://doi.org/10.1016/0019-2791(71)90454-x. PMID: 5135623

    Article  CAS  PubMed  Google Scholar 

  83. Kim JK, Adam A, Loo JC, Ong H (1995) A chemiluminescence enzyme immunoassay (CLEIA) for the determination of medroxyprogesterone acetate in human serum. J Pharm Biomed Anal 13(7):885–891. https://doi.org/10.1016/0731-7085(95)01503-d. PMID: 8562612

    Article  CAS  PubMed  Google Scholar 

  84. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. https://doi.org/10.1038/nature01511. PMID: 12634793

    Article  CAS  PubMed  Google Scholar 

  85. O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31(1):76–82. https://doi.org/10.1016/s1046-2023(03)00090-2. PMID: 12893176

    Article  PubMed  Google Scholar 

  86. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104. https://doi.org/10.1016/s0968-0004(99)01535-2. PMID: 10694875

    Article  CAS  PubMed  Google Scholar 

  87. Weinmann AS, Farnham PJ (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26(1):37–47. https://doi.org/10.1016/S1046-2023(02)00006-3. PMID: 12054903

    Article  CAS  PubMed  Google Scholar 

  88. Asp P (2018) How to combine ChIP with qPCR. In: Visa N, Jordán-Pla A (eds) Chromatin immunoprecipitation. Methods in molecular biology, vol 1689. Humana, New York. https://doi.org/10.1007/978-1-4939-7380-4_3

    Chapter  Google Scholar 

  89. Daniel R, Michael G (2003) Genomewide histone acetylation microarrays. Methods 31(1):83–89., ISSN 1046-2023. https://doi.org/10.1016/S1046-2023(03)00091-4

    Article  CAS  Google Scholar 

  90. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89(5):1827–1831. https://doi.org/10.1073/pnas.89.5.1827. PMID: 1542678; PMCID: PMC48546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877. https://doi.org/10.1093/nar/gki901. PMID: 16224102; PMCID: PMC1258174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. https://doi.org/10.1038/ng1598. Epub 2005 July 10. PMID: 16007088

    Article  CAS  PubMed  Google Scholar 

  93. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336(6083):934–937. https://doi.org/10.1126/science.1220671. Epub 2012 Apr 26. PMID: 22539555

    Article  CAS  PubMed  Google Scholar 

  94. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, Min JH, Jin P, Ren B, He C (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149(6):1368–1380. https://doi.org/10.1016/j.cell.2012.04.027. Epub 2012 May 17. PMID: 22608086; PMCID: PMC3589129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eid J, Fehr A (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. https://doi.org/10.1126/science.1162986. Epub 2008 Nov 20. PMID: 19023044

    Article  CAS  PubMed  Google Scholar 

  96. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O’Grady J (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33(3):296–300. https://doi.org/10.1038/nbt.3103. Epub 2014 Dec 8. PMID: 25485618

    Article  CAS  PubMed  Google Scholar 

  97. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680. https://doi.org/10.1038/nrg2641. Epub 2009 Sep 8. PMID: 19736561; PMCID: PMC3191340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U (2018) “It’s a gut feeling”—Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 44(1):1–30. https://doi.org/10.1080/1040841X.2017.1303660. Epub 2017 May 9. Erratum in: Crit Rev Microbiol 2018;44(1):i. PMID: 28485690

    Article  CAS  PubMed  Google Scholar 

  99. Kim J, Hegde M, Jayaraman A (2010) Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions. Lab Chip 10(1):43–50. https://doi.org/10.1039/b911367c. Epub 2009 Oct 16. PMID: 20024049

    Article  CAS  PubMed  Google Scholar 

  100. Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA 113(1):E7–E15. https://doi.org/10.1073/pnas.1522193112. Epub 2015 Dec 14. PMID: 26668389; PMCID: PMC4711860

  101. Costello CM, Sorna RM, Goh YL, Cengic I, Jain NK, March JC (2014) 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm 11(7):2030–2039. https://doi.org/10.1021/mp5001422. Epub 2014 May 13. PMID: 24798584; PMCID: PMC4096232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Costello CM, Hongpeng J, Shaffiey S, Yu J, Jain NK, Hackam D, March JC (2014) Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol Bioeng 111(6):1222–1232. https://doi.org/10.1002/bit.25180. Epub 2014 Jan 22. PMID: 24390638; PMCID: PMC4233677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Elzinga J, van der Oost J, de Vos WM, Smidt H (2019) The use of defined microbial communities to model host-microbe interactions in the human gut. Microbiol Mol Biol Rev 83(2):e00054-18. https://doi.org/10.1128/MMBR.00054-18. PMID: 30867232; PMCID: PMC6684003

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schmid CA, Müller A (2013) FoxD3 is a novel, epigenetically regulated tumour suppressor in gastric carcinogenesis. Gastroenterology 144(1):22–25. https://doi.org/10.1053/j.gastro.2012.11.014. Epub 2012 Nov 16. PMID: 23164571

    Article  PubMed  Google Scholar 

  105. Doherty R, Whiston R, Cormican P, Finlay EK, Couldrey C, Brady C, O’Farrelly C, Meade KG (2016) The CD4(+) T cell methylome contributes to a distinct CD4(+) T cell transcriptional signature in Mycobacterium bovis-infected cattle. Sci Rep 6:31014. https://doi.org/10.1038/srep31014. PMID: 27507428; PMCID: PMC4978967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang W, Zhou C, Tang H, Yu Y, Zhang Q (2020) Combined analysis of DNA methylome and transcriptome reveal novel candidate genes related to porcine Escherichia coli F4ab/ac-Induced Diarrhea. Front Cell Infect Microbiol 10:250. https://doi.org/10.3389/fcimb.2020.00250. PMID: 32547963; PMCID: PMC7272597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, Feng Z, Losic B, Mahajan MC, Jabado OJ, Deikus G, Clark TA, Luong K, Murray IA, Davis BM, Keren-Paz A, Chess A, Roberts RJ, Korlach J, Turner SW, Kumar V, Waldor MK, Schadt EE (2012) Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30(12):1232–1239. https://doi.org/10.1038/nbt.2432. Epub 2012 Nov 8. Erratum in: Nat Biotechnol 2013; 31(6):566. PMID: 23138224; PMCID: PMC3879109

    Article  CAS  PubMed  Google Scholar 

  108. Laszlo AH, Derrington IM, Brinkerhoff H, Langford KW, Nova IC, Samson JM, Bartlett JJ, Pavlenok M, Gundlach JH (2013) Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc Natl Acad Sci USA 110(47):18904–18909. https://doi.org/10.1073/pnas.1310240110. Epub 2013 Oct 28. PMID: 24167255; PMCID: PMC3839702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14(4):407–410. https://doi.org/10.1038/nmeth.4184. Epub 2017 Feb 20. PMID: 28218898

    Article  CAS  PubMed  Google Scholar 

  110. McIntyre ABR, Alexander N, Grigorev K, Bezdan D, Sichtig H, Chiu CY, Mason CE (2019) Single-molecule sequencing detection of N6-methyladenine in microbial reference materials. Nat Commun 10(1):579. https://doi.org/10.1038/s41467-019-08289-9. PMID: 30718479; PMCID: PMC6362088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14(4):411–413. https://doi.org/10.1038/nmeth.4189. Epub 2017 Feb 20. PMID: 28218897; PMCID: PMC5704956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seib KL, Jen FE, Tan A, Scott AL, Kumar R, Power PM, Chen LT, Wu HJ, Wang AH, Hill DM, Luyten YA, Morgan RD, Roberts RJ, Maiden MC, Boitano M, Clark TA, Korlach J, Rao DN, Jennings MP (2015) Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N(6)-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res 43(8):4150–4162. https://doi.org/10.1093/nar/gkv219. Epub 2015 Apr 6. PMID: 25845594; PMCID: PMC4417156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jen FE, Seib KL, Jennings MP (2014) Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob Agents Chemother 58(7):4219–4221. https://doi.org/10.1128/AAC.00004-14. Epub 2014 Apr 28. PMID: 24777094; PMCID: PMC4068601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Srikhanta YN, Gorrell RJ, Steen JA, Gawthorne JA, Kwok T, Grimmond SM, Robins-Browne RM, Jennings MP (2011) Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS One 6(12):e27569. https://doi.org/10.1371/journal.pone.0027569. Epub 2011 Dec 5. PMID: 22162751; PMCID: PMC3230613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zaleski P, Wojciechowski M, Piekarowicz A (2005) The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection. Microbiology (Reading) 151(Pt 10):3361–3369. https://doi.org/10.1099/mic.0.28184-0. PMID: 16207918

    Article  CAS  Google Scholar 

  116. Anjum A, Brathwaite KJ, Aidley J, Connerton PL, Cummings NJ, Parkhill J, Connerton I, Bayliss CD (2016) Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168. Nucleic Acids Res 44(10):4581–4594. https://doi.org/10.1093/nar/gkw019. Epub 2016 Jan 18. PMID: 26786317; PMCID: PMC4889913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hu Y, Huang K, An Q, Du G, Hu G, Xue J, Zhu X, Wang CY, Xue Z, Fan G (2016) Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol 17:88. https://doi.org/10.1186/s13059-016-0950-z. PMID: 27150361; PMCID: PMC4858893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tanić M, Beck S (2017) Epigenome-wide association studies for cancer biomarker discovery in circulating cell-free DNA: technical advances and challenges. Curr Opin Genet Dev 42:48–55. https://doi.org/10.1016/j.gde.2017.01.017. Epub 2017 Feb 16. PMID: 28391083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

AKK would like to acknowledge the UGC, Government of India for SRF. UD is supported by the SERB-DST grant (ECR/2017/000605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Dhawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, A.K., Lynn, A.M., Dhawan, U. (2021). Deciphering the Role of Epigenetic Reprogramming in Host-Pathogen Interactions. In: Hameed, S., Fatima, Z. (eds) Integrated Omics Approaches to Infectious Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-0691-5_3

Download citation

Publish with us

Policies and ethics