Skip to main content

Pathogenesis of Staphylococcus aureus and Proteomic Strategies for the Identification of Drug Targets

  • Chapter
  • First Online:
Integrated Omics Approaches to Infectious Diseases

Abstract

Staphylococcus aureus is a leading pathogen responsible for mild to severe invasive infections in humans. Especially, methicillin-resistant Staphylococcus aureus (MRSA) is prevalent in hospital settings and biomaterial-associated infections. In addition, MRSA is listed as high-priority pathogen in WHO priority pathogen list and occupied the serious threat level in CDC’s drug-resistant bacteria report. Persistent S. aureus infections are often associated with biofilm formation and resistant to conventional antimicrobial therapy. Inhibiting the surface adherence and virulence of the bacterium is the current alternative approach without affecting growth to reduce the possibility of resistance development. Though numerous antibiofilm agents have been identified, their mode of action remains unclear. Proteomics is the powerful approach to delineate the drug targets of bioactive molecules. Bottom-up strategy-based comparative proteomics is extensively used in the field of disease diagnosis and therapy. Molecular targets of antibiotics and antibiofilm agents active against S. aureus have been unveiled using various proteomic approaches and lead to development of drug discovery as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fitzpatrick F, Humphreys H, O’gara JP (2005) The genetics of staphylococcal biofilm formation—will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect 11(12):967–973

    Article  CAS  PubMed  Google Scholar 

  2. Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L (2015) Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti-Infect Ther 13(12):1499–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonar E, Wójcik I, Wladyka B (2015) Proteomics in studies of Staphylococcus aureus virulence. Acta Biochim Pol 62(3):367–381

    Article  CAS  PubMed  Google Scholar 

  4. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762

    Article  PubMed  Google Scholar 

  5. Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O (2018) Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 9:2419

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kobayashi SD, Malachowa N, DeLeo FR (2015) Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol 185(6):1518–1527

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grundmann H, Aanensen DM, Van Den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW, European Staphylococcal Reference Laboratory Working Group (2010) Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 7(1):e1000215

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15):1763–1771

    Article  CAS  PubMed  Google Scholar 

  9. Otter JA, French GL (2011) Community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J Hosp Infect 79(3):189–193

    Article  CAS  PubMed  Google Scholar 

  10. Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S (2019) Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 43(6):622–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schierholz JM, Beuth J (2001) Implant infections: a haven for opportunistic bacteria. J Hosp Infect 49(2):87–93

    Article  CAS  PubMed  Google Scholar 

  12. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mcgavin MJ, Heinrichs DE (2012) The staphylococci and staphylococcal pathogenesis. Front Cell Infect Microbiol 2:66

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tacconelli E, Magrini N, Kahlmeter G, Singh N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organ 27:318–327

    Google Scholar 

  15. Centres for Disease Control and Prevention (US) (2013) Antibiotic resistance threats in the United States, 2013. Centres for Disease Control and Prevention, US Department of Health and Human Services

    Google Scholar 

  16. Bennett JW, Chung KT (2001) Alexander Fleming and the discovery of penicillin

    Google Scholar 

  17. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10(3):226

    CAS  PubMed Central  Google Scholar 

  18. Gaynes R (2017) The discovery of penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis 23(5):849

    Article  PubMed Central  Google Scholar 

  19. Khan MF (2017) Brief history of Staphylococcus aureus: a focus to antibiotic resistance. EC Microbiol 5(2):36–39

    Google Scholar 

  20. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146(3713):837–837

    Article  CAS  Google Scholar 

  21. Fleming A (1945) Penicillin. Nobel Lecture, December 11, 1945. Nobel e-museum

    Google Scholar 

  22. Kim J (2009) Understanding the evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Newsl 31(3):17–23

    Article  Google Scholar 

  23. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40(1):135–136

    Article  CAS  PubMed  Google Scholar 

  24. Centers for Disease Control and Prevention (CDC) (2002) Staphylococcus aureus resistant to vancomycin – United States, 2002. MMWR. Morbidity and mortality weekly report, 51(26), p. 565

    Google Scholar 

  25. Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, Moellering RC Jr, Ferraro MJ (2001) Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358(9277):207–208

    Article  CAS  PubMed  Google Scholar 

  26. Gould IM (2006) Costs of hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) and its control. Int J Antimicrob Agents 28(5):379–384

    Article  CAS  PubMed  Google Scholar 

  27. Zucca M, Savoia D (2010) The post-antibiotic era: promising developments in the therapy of infectious diseases. Int J Biomed Sci 6(2):77

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Motallebi M, Alibolandi Z, Aghmiyuni ZF, van Leeuwen WB, Sharif MR, Moniri R (2020) Molecular analysis and the toxin, MSCRAMM, and biofilm genes of methicillin-resistant Staphylococcus aureus strains isolated from pemphigus wounds: a study based on SCCmec and dru typing. Infect Genet Evol 87:104644

    Article  PubMed  CAS  Google Scholar 

  29. Gross M, Cramton SE, Götz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69(5):3423–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cue DR, Lei MG, Lee C (2012) Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol 2:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hong X, Qin J, Li T, Dai Y, Wang Y, Liu Q, He L, Lu H, Gao Q, Lin Y, Li M (2016) Staphylococcal protein A promotes colonization and immune evasion of the epidemic healthcare-associated MRSA ST239. Front Microbiol 7:951

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mirzaee M, Najar-Peerayeh S, Behmanesh M (2015) Prevalence of fibronectin-binding protein (FnbA and FnbB) genes among clinical isolates of methicillin resistant Staphylococcus aureus. Mol Genet Microbiol Virol 30(4):221–224

    Article  Google Scholar 

  33. Park PW, Roberts DD, Grosso LE, Parks WC, Rosenbloom J, Abrams WR, Mecham RP (1991) Binding of elastin to Staphylococcus aureus. J Biol Chem 266(34):23399–23406

    Article  CAS  PubMed  Google Scholar 

  34. Hudson MC, Ramp WK, Frankenburg KP (1999) Staphylococcus aureus adhesion to bone matrix and bone-associated biomaterials. FEMS Microbiol Lett 173(2):279–284

    Article  CAS  PubMed  Google Scholar 

  35. Herman-Bausier P, Labate C, Towell AM, Derclaye S, Geoghegan JA, Dufrêne YF (2018) Staphylococcus aureus clumping factor A is a force-sensitive molecular switch that activates bacterial adhesion. Proc Natl Acad Sci 115(21):5564–5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Porayath C, Suresh MK, Biswas R, Nair BG, Mishra N, Pal S (2018) Autolysin mediated adherence of Staphylococcus aureus with Fibronectin, Gelatin and Heparin. Int J Biol Macromol 110:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186(11):6445–6453

    Article  CAS  PubMed  Google Scholar 

  38. Stach N, Kaszycki P, Władyka B, Dubin G (2018) Extracellular proteases of Staphylococcus spp. In: Pet-to-man travelling staphylococci. Academic Press, London, pp 135–145

    Google Scholar 

  39. Hu C, Xiong N, Zhang Y, Rayner S, Chen S (2012) Functional characterization of lipase in the pathogenesis of Staphylococcus aureus. Biochem Biophys Res Commun 419(4):617–620

    Article  CAS  PubMed  Google Scholar 

  40. Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO II, Horswill AR (2014) Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 9(4):e95574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mandell GL (1975) Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal–leukocyte interaction. J Clin Invest 55(3):561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ibberson CB, Jones CL, Singh S, Wise MC, Hart ME, Zurawski DV, Horswill AR (2014) Staphylococcus aureus hyaluronidase is a CodY-regulated virulence factor. Infect Immun 82(10):4253–4264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O (2010) Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6(8):e1001036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Periasamy S, Chatterjee SS, Cheung GY, Otto M (2012) Phenol-soluble modulins in staphylococci: what are they originally for? Commun Integr Biol 5(3):275–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vandenesch F, Lina G, Henry T (2012) Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2:12

    Article  PubMed  PubMed Central  Google Scholar 

  46. Argudín MÁ, Mendoza MC, Rodicio MR (2010) Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2(7):1751–1773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Shallcross LJ, Fragaszy E, Johnson AM, Hayward AC (2013) The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 13(1):43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kulhankova K, Kinney KJ, Stach JM, Gourronc FA, Grumbach IM, Klingelhutz AJ, Salgado-Pabón W (2018) The superantigen toxic shock syndrome toxin 1 alters human aortic endothelial cell function. Infect Immun 86(3):e00848-17

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bien J, Sokolova O, Bozko P (2011) Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J Pathog 2011: 601905, pp. 1–13

    Google Scholar 

  50. Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M, Komatsuzawa H (2011) Expression of virulence factors by Staphylococcus aureus grown in serum. Appl Environ Microbiol 77(22):8097–8105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46(Supplement_5):S350–S359

    Article  CAS  PubMed  Google Scholar 

  52. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186(6):1838–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kierek-Pearson K, Karatan E (2005) Biofilm development in bacteria. Adv Appl Microbiol 57:79–111

    Article  CAS  PubMed  Google Scholar 

  54. Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16(7):397

    Article  CAS  PubMed  Google Scholar 

  55. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2(5):445–459

    Article  PubMed  PubMed Central  Google Scholar 

  56. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    Article  PubMed  CAS  Google Scholar 

  57. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33(26):5967–5982

    Article  CAS  PubMed  Google Scholar 

  58. Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178

    Article  PubMed  PubMed Central  Google Scholar 

  59. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  60. Cerca N, Brooks JL, Jefferson KK (2008) Regulation of the intercellular adhesin locus regulator (icaR) by SarA, σB, and IcaR in Staphylococcus aureus. J Bacteriol 190(19):6530–6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. François P, Scherl A, Hochstrasser D, Schrenzel J (2010) Proteomic approaches to study Staphylococcus aureus pathogenesis. J Proteome 73(4):701–708

    Article  CAS  Google Scholar 

  62. Sleno L, Emili A (2008) Proteomic methods for drug target discovery. Curr Opin Chem Biol 12(1):46–54

    Article  CAS  PubMed  Google Scholar 

  63. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  64. Savaryn JP, Catherman AD, Thomas PM, Abecassis MM, Kelleher NL (2013) The emergence of top-down proteomics in clinical research. Genome Med 5(6):1–8

    Article  CAS  Google Scholar 

  65. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki KI, Nagai Y, Lian J (2001) Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357(9264):1225–1240

    Article  CAS  PubMed  Google Scholar 

  66. Kohler C, Wolff S, Albrecht D, Fuchs S, Becher D, Büttner K, Engelmann S, Hecker M (2005) Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach. Int J Med Microbiol 295(8):547–565

    Article  CAS  PubMed  Google Scholar 

  67. Hecker M, Mäder U, Völker U (2018) From the genome sequence via the proteome to cell physiology–Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 308(6):545–557

    Article  CAS  PubMed  Google Scholar 

  68. Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics 2009:239204

    PubMed  PubMed Central  Google Scholar 

  69. Nowakowski AB, Wobig WJ, Petering DH (2014) Native SDS-PAGE: high resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics 6(5):1068–1078

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteome 104:140–150

    Article  CAS  Google Scholar 

  71. Buyukkoroglu G, Dora DD, Özdemir F, Hızel C (2018) Techniques for protein analysis. In: Omics technologies and bio-engineering. Academic Press, London, pp 317–351

    Chapter  Google Scholar 

  72. Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, Lokamani I, Yaoita E, Yamamoto T (2014) Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clin Proteomics 11(1):1–10

    Article  CAS  Google Scholar 

  73. Penque D (2009) Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics Clin Appl 3(2):155–172

    Article  CAS  PubMed  Google Scholar 

  74. Sianglum W, Srimanote P, Wonglumsom W, Kittiniyom K, Voravuthikunchai SP (2011) Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate. PLoS One 6(2):e16628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Valliammai A, Sethupathy S, Ananthi S, Priya A, Selvaraj A, Nivetha V, Aravindraja C, Mahalingam S, Pandian SK (2020) Proteomic profiling unveils citral modulating expression of IsaA, CodY and SaeS to inhibit biofilm and virulence in methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 158:208–221

    Article  CAS  Google Scholar 

  76. Wang J, Wang Z, Wu R, Jiang D, Bai B, Tan D, Yan T, Sun X, Zhang Q, Wu Z (2016) Proteomic analysis of the antibacterial mechanism of action of Juglone against Staphylococcus aureus. Nat Prod Commun 11(6):1934578X1601100632

    CAS  Google Scholar 

  77. Carruthers NJ, Stemmer PM, Media J, Swartz K, Wang X, Aube N, Hamann MT, Valeriote F, Shaw J (2020) The anti-MRSA compound 3-O-alpha-l-(2″,3″-di-p-coumaroyl) rhamnoside (KCR) inhibits protein synthesis in Staphylococcus aureus. J Proteome 210:103539

    Article  CAS  Google Scholar 

  78. Liu X, Hu Y, Pai PJ, Chen D, Lam H (2014) Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin. J Proteome Res 13(3):1223–1233

    Article  CAS  PubMed  Google Scholar 

  79. Liu X, Pai PJ, Zhang W, Hu Y, Dong X, Qian PY, Chen D, Lam H (2016) Proteomic response of methicillin-resistant S. aureus to a synergistic antibacterial drug combination: a novel erythromycin derivative and oxacillin. Sci Rep 6:19841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cooper B, Islam N, Xu Y, Beard HS, Garrett WM, Gu G, Nou X (2018) Quantitative proteomic analysis of Staphylococcus aureus treated with punicalagin, a natural antibiotic from pomegranate that disrupts iron homeostasis and induces SOS. Proteomics 18(9):1700461

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors sincerely acknowledge DST-FIST [Grant No. SR/FST/LSI-639/2015(C)], UGC-SAP [Grant No. F.5-1/2018/DRS-II(SAP-II)] and DST-PURSE [Grant No. SR/PURSE Phase 2/38 (G)] for providing instrumentation facilities. The authors also thank RUSA 2.0 [F.24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn, GoI], and SKP is thankful to UGC for Mid-Career Award [F.19-225/2018(BSR)].

Competing Interest

All the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valliammai, A., Selvaraj, A., Pandian, S.K. (2021). Pathogenesis of Staphylococcus aureus and Proteomic Strategies for the Identification of Drug Targets. In: Hameed, S., Fatima, Z. (eds) Integrated Omics Approaches to Infectious Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-0691-5_18

Download citation

Publish with us

Policies and ethics