Skip to main content

Multimetallic Catalysts and Electrocatalysts: Dynamic Core–Shell Nanostructures

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Abstract

The ability to tune the synergistic properties of heterogeneous catalysts by manipulating the surface composition, structure, and morphology is critical for achieving the desired catalytic performance, especially for metal and alloy catalysts at the nanoscale sizes. However, the control of the surface composition, structure, and morphology of nanocatalysts is challenging due to the highly dynamic nature of atoms on the surface or in the bulk phase of the metal or alloy nanomaterials. This chapter focuses on discussing recent findings of the investigations of the composition, structure, and morphology of metal and alloy nanoparticle catalysts, especially those involving dynamic core–shell and alloy structures. Insights into the structural synergies of their catalytic and electrocatalytic properties in reactions such as oxygen reduction reaction and hydrocarbon oxidation reaction. The development of active, stable, and low-cost heterogeneous catalysts for these reactions will contribute to the global drive to sustainable energy and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998

    Google Scholar 

  2. Li J, Yin HM, Li XB, Okunishi E, Shen YL, He J, Tang ZK, Wang WX, Yücelen E, Li C, Gong Y, Gu L, Miao S, Liu LM, Luo J, Ding Y (2017) Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat Energy 2:17111

    Article  CAS  Google Scholar 

  3. Wu ZP, Shan S, Zang SQ, Zhong CJ (2020) Dynamic core–shell and alloy structures of multimetallic nanomaterials and their catalytic synergies. Acc Chem Res 53:2913–2924. https://doi.org/10.1021/acs.accounts.1020c00564

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu ZP, Caracciolo DT, Maswadeh Y, Wen J, Kong Z, Shan S, Vargas JA, Yan S, Hopkins E, Park K, Sharma A, Ren Y, Petkov V, Wang L, Zhong CJ (2021) Alloying–realloying enabled high durability for Pt–Pd–3d-transition metal nanoparticle fuel cell catalysts. Nat Commun 12:859. https://doi.org/10.21203/rs.21203.rs-54923/v21201

    Article  Google Scholar 

  5. Wu ZP, Shan S, Xie ZH, Kang N, Park K, Hopkins E, Yan S, Sharma A, Luo J, Wang J, Petkov V, Wang L, Zhong CJ (2018) Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction. ACS Catal 8:11302–11313

    Article  CAS  Google Scholar 

  6. Kong Z, Maswadeh Y, Vargas JA, Shan S, Wu ZP, Kareem H, Leff AC, Tran DT, Chang F, Yan S, Nam S, Zhao X, Lee JM, Luo J, Shastri S, Yu G, Petkov V, Zhong CJ (2020) Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J Am Chem Soc 142:1287–1299

    Article  CAS  Google Scholar 

  7. Wu ZP, Miao B, Hopkins E, Park K, Jiang CY, H, Zhang M, Zhong CJ, Wang L (2019) Poisonous species in complete ethanol oxidation reaction on palladium catalysts. J Phys Chem C 123:20853–20868

    Google Scholar 

  8. Zhong CJ, Maye MM (2001) Core−shell assembled nanoparticles as catalysts. Adv Mater 13:1507–1511

    Article  CAS  Google Scholar 

  9. Zhong CJ, Luo J, Njoki PN, Mott D, Wanjala BN, Loukrakpam R, Lim S, Wang L, Fang B, Xu Z (2008) Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ Sci 1:454–466

    Article  CAS  Google Scholar 

  10. Xia Y, Gilroy KD, Peng HC, Xia X (2017) Seed-mediated growth of colloidal metal nanocrystals. Angew Chem Int Ed 56:60–95

    Article  CAS  Google Scholar 

  11. Wanjala BN, Luo J, Loukrakpam R, Fang B, Mott D, Njoki PN, Engelhard M, Naslund HR, Wu JK, Wang L, Malis O, Zhong CJ (2010) Nanoscale alloying, phase-segregation, and core−shell evolution of gold−platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem Mater 22:4282–4294

    Article  CAS  Google Scholar 

  12. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934

    Article  CAS  Google Scholar 

  13. Bu L, Shao Q, E B, Guo J, Yao J, Huang X, (2017) PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J Am Chem Soc 139:9576–9582

    Article  CAS  Google Scholar 

  14. Tian X, Luo J, Nan H, Zou H, Chen R, Shu T, Li X, Li Y, Song H, Liao S, Adzic RR (2016) Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J Am Chem Soc 138:1575–1583

    Article  CAS  Google Scholar 

  15. Wu J, Shan S, Petkov V, Prasai B, Cronk H, Joseph P, Luo J, Zhong CJ (2015) Composition-structure-activity relationships for palladiumalloyed nanocatalysts in oxygen reduction reaction: an Ex-Situ/In-Situ high energy X-ray diffraction study. ACS Catal 5:5317–5327

    Article  CAS  Google Scholar 

  16. Wu Z, Zhang M, Jiang H, Zhong CJ, Wang CY, L, (2017) Competitive C-C and C–H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment. Phys Chem Chem Phys 19:15444–15453

    Article  CAS  Google Scholar 

  17. Shan S, Luo J, Wu J, Kang N, Zhao W, Cronk H, Zhao Y, Joseph P, Petkov V, Zhong CJ (2014) Nanoalloy catalysts for electrochemical energy conversion and storage reactions. RSC Adv 4:42654–42669

    Article  CAS  Google Scholar 

  18. Shan S, Yang L, Luo J, Zhong CJ (2014) Nanoalloy catalysts: structural and catalytic properties. Catal Sci Technol 4:3570–3588

    Article  CAS  Google Scholar 

  19. Wu CH, Liu C, Su D, Xin HL, Fang HT, Eren B, Zhang S, Murray CB, Salmeron MB (2019) Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat Catal 2:78–85

    Article  CAS  Google Scholar 

  20. Huang ZF, Song J, Du Y, Xi S, Dou S, Nsanzimana JMV, Wang C, Xu ZJ, Wang X (2019) Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat Energy 4:329–338

    Article  CAS  Google Scholar 

  21. Lu A, Wu ZP, Chen B, Peng DL, Yan S, Shan S, Skeete Z, Chang F, Chen Y, Zheng H, Zeng D, Yang L, Sharma A, Luo J, Wang L, Petkov V, Zhong CJ (2018) From a Au-rich core/PtNi-rich shell to a Ni-rich core/PtAu-rich shell: an effective thermochemical pathway to nanoengineering catalysts for fuel cells. J Mater Chem A 6:5143–5155

    Article  CAS  Google Scholar 

  22. Wu ZP, Lu XF, Zang SQ, Lou XW (2020) Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater 30:1910274

    Article  CAS  Google Scholar 

  23. Maswadeh Y, Shan S, Prasai B, Zhao Y, Xie ZH, Wu Z, Luo J, Ren Y, Zhong CJ, Petkov V (2017) Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd–Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction. J Mater Chem A 5:7355–7365

    Article  CAS  Google Scholar 

  24. Park HY, Schadt MJ, Wang L, Lim IS, Njoki PN, Kim SH, Jang MY, Luo J, Zhong CJ (2007) Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23:9050–9056

    Article  CAS  Google Scholar 

  25. Wang L, Luo J, Maye MM, Fan Q, Rendeng Q, Engelhard MH, Wang C, Lin Y, Zhong CJ (2005) Iron oxide–gold core–shell nanoparticles and thin film assembly. J Mater Chem 15:1821–1832

    Article  CAS  Google Scholar 

  26. Wang L, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin Y, Kim N, Wang JQ, Zhong CJ (2005) Monodispersed core−shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  CAS  Google Scholar 

  27. Wang L, Wang X, Luo J, Wanjala BN, Wang C, Chernova NA, Engelhard MH, Liu Y, Bae IT, Zhong CJ (2010) Core−shell-structured magnetic ternary nanocubes. J Am Chem Soc 132:17686–17689

    Article  CAS  Google Scholar 

  28. Li J, Skeete Z, Shan S, Yan S, Kurzatkowska K, Zhao W, Ngo QM, Holubovska P, Luo J, Hepel M, Zhong CJ (2015) Surface enhanced raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal Chem 87:10698–10702

    Article  CAS  Google Scholar 

  29. Lin L, Crew E, Yan H, Shan S, Skeete Z, Mott D, Krentsel T, Yin J, Chernova NA, Luo J, Engelhard MH, Wang C, Li Q, Zhong CJ (2013) Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs. J Mater Chem B 1:4320–4330

    Article  CAS  Google Scholar 

  30. Petkov V, Maswadeh Y, Vargas JA, Shan S, Kareem H, Wu ZP, Luo J, Zhong CJ, Shastri S, Kenesei P (2019) Deviations from Vegard’s law and evolution of the electrocatalytic activity and stability of Pt-based nanoalloys inside fuel cells by in operando X-ray spectroscopy and total scattering. Nanoscale 11:5512–5525

    Article  CAS  Google Scholar 

  31. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2:454–460

    Article  CAS  Google Scholar 

  32. Rizzi M, Furlan S, Peressi M, Baldereschi A, Dri C, Peronio A, Africh C, Lacovig P, Vesselli E, Comelli G (2012) Tailoring bimetallic alloy surface properties by kinetic control of self-diffusion processes at the nanoscale. J Am Chem Soc 134:16827–16833

    Article  CAS  Google Scholar 

  33. Petkov V, Prasai B, Shan S, Ren Y, Wu J, Cronk H, Luo J, Zhong CJ (2016) Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies. Nanoscale 8:10749–10767

    Article  CAS  Google Scholar 

  34. Chong L, Wen J, Kubal J, Sen FG, Zou J, Greeley J, Chan M, Barkholtz H, Ding W, Liu DJ (2018) Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362:1276–1281

    Article  CAS  Google Scholar 

  35. Huang XQ, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang YM, Duan XF, Mueller T, Huang Y (2015) High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348:1230–1234

    Article  CAS  Google Scholar 

  36. Petkov V, Maswadeh Y, Zhao Y, Lu A, Cronk H, Chang F, Shan S, Kareem H, Luo J, Zhong CJ, Shastri S, Kenesei P (2018) Nanoalloy catalysts inside fuel cells: an atomic-level perspective on the functionality by combined in operando x-ray spectroscopy and total scattering. Nano Energy 49:209–220

    Article  CAS  Google Scholar 

  37. Chang F, Yu G, Shan S, Skeete Z, Wu J, Luo J, Ren Y, Petkov V, Zhong CJ (2017) Platinum–nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction. J Mater Chem A 5:12557–12568

    Article  CAS  Google Scholar 

  38. Liao Y, Yu G, Zhang Y, Guo T, Chang F, Zhong CJ (2018) Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem C 120:10476–10484

    Article  Google Scholar 

  39. Petkov V, Maswadeh Y, Lu A, Shan S, Kareem H, Zhao Y, Luo J, Zhong CJ, Beyer K, Chapman K (2018) Evolution of active sites in Pt-based nanoalloy catalysts for the oxidation of carbonaceous species by combined in situ infrared spectroscopy and total X-ray scattering. ACS Appl Mater Interfaces 10:10870–10881

    Article  CAS  Google Scholar 

  40. Shan S, Li J, Maswadeh Y, O’Brien C, Kareem H, Tran DT, Lee IC, Wu ZP, Wang S, Yan S, Cronk H, Mott D, Yang L, Luo J, Petkov V, Zhong CJ (2020) Surface oxygenation of multicomponent nanoparticles toward active and stable oxidation catalysts. Nat Commun 11:4201

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation (CHE 1566283) and the Department of Energy – Basic Energy Sciences (DE-SC0006877). The authors also thank all collaborators for their contributions, especially Valeri Petkov, to the in-situ/operando studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Jian Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, ZP. et al. (2021). Multimetallic Catalysts and Electrocatalysts: Dynamic Core–Shell Nanostructures. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_5

Download citation

Publish with us

Policies and ethics