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Subcriticality
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Abstract For a subcritical reactor system driven by a periodically pulsed spallation
neutron source in KUCA, the Feynman-α and the Rossi-α neutron correlation anal-
yses are conducted to determine the prompt neutron decay constant and quantitatively
to confirm a non-Poisson character of the neutron source. The decay constant deter-
mined from the present Feynman-α analysis well agrees with that from a previous
analysis for the same subcritical system driven by an inherent source. Considering
the effect of a higher mode excited, the disagreement can be successfully resolved.
The power spectral analysis on frequency domain is also carried out. Not only the
cross-power but also the auto-power spectral density have a considerable correlated
component even at a deeply subcritical state, where no correlated component could
be previously observed under a 14 MeV neutron source. The indicator of the non-
Poisson character of the present spallation source can be obtained from the spectral
analysis and is consistent with that from the Rossi-α analysis. An experimental tech-
nique based on an accelerator-beam trip or restart operation is proposed to determine
the subcritical reactivity of ADS. Applying the least-squares inverse kinetics method
to the data analysis, the subcriticality can be inferred from time-sequence neutron
count data after these operations.
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2.1 Feynman-α and Rossi-α Analyses

2.1.1 Experimental Settings

2.1.1.1 Core Configurations

The Feynman-α and the Rossi-α neutron correlation analyses considering a non-
Poisson character of the spallation source [1] are carried out in the A-core that has
two kinds of fuel assemblies: 1/8”P60EUEU and 1/8”P4EUEU. Figure 2.1 shows
a side view of the fuel assembly referred to as 1/8”P60EUEU. Fuel and moderator
plates of the assembly were set in a 1.5 mm-thick aluminum sheath and the cross
section of these plates within the assembly was the square of 2” (50.8 mm). The fuel
assembly consisted of 60 unit cells. The unit cell was composed of two (1/16” thick)
uranium plates with Al cladding and one (1/8” thick) polyethylene plate. Each of
the fuel assemblies had 120 sheets of the uranium plates. The active height of the
core, namely 60 unit cells, was 15” (about 38 cm). Adjacent to both axial sides of the
active region of each fuel assembly, about 22” (57 cm) upper and 24” (52 cm) lower
polyethylene reflectors were attached, respectively. Another fuel assembly referred
to as 1/8” P4EUEU consisted of 4 unit cells with upper and lower polyethylene
reflectors. The core configuration employed in this study is shown in Fig. 2.2. The
twenty-five 1/8”P60EUEU assemblies and one 1/8”P4EUEU assembly were loaded
on a grid plate to constitute a critical reactor core. The core was surrounded with
many polyethylene-reflector assemblies.

The subcriticality for the present experiment was adjusted by changing the axial
position of the central fuel loading [3], as well as the positions of safety and control
rods. These subcritical and critical patterns employed in the present experiments
are shown in Table 2.1, where these respective subcriticalities are calculated by the
continuous-energyMonte Carlo codeMVP version 3 (MVP3) [3, 4] with the nuclear
data library JENDL-4.0 [5] are also included. The error of the subcriticality indicates
statistical uncertainty ±1σ of the MVP calculation.
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Fig. 2.1 Description of 1/8”P60EUEU fuel assembly (Ref. [2])
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Fig. 2.2 Top view of core configuration and neutron detector location (Ref. [1])

Table 2.1 Experimental patterns of control rods and central fuel loading (Ref. [1])

Subcritical Axial position [mm] Central Subcriticality

Pattern C1 C2 C3 S4 S5 S6 Loading [%�k/k]

Critical U.L. 678.98 U.L. U.L. U.L. U.L. C.I.

A U.L. L.L. U.L. U.L. U.L. U.L. C.I. 0.307 ± 0.008

B L.L. U.L. U.L. U.L. U.L. U.L. C.I. 0.725 ± 0.018

C L.L. L.L. L.L. U.L. U.L. U.L. C.I. 1.483 ± 0.040

D L.L. L.L. L.L. U.L. U.L. L.L. C.I. 2.056 ± 0.054

E L.L. L.L. L.L. L.L. L.L. L.L. C.I. 3.189 ± 0.083

F L.L. L.L. L.L. L.L. L.L. L.L. C.W. 13.604 ± 0.381

L.L.: Lower Limit [0 mm], U.L.: Upper Limit [1200 mm]
C.I.: Completely Inserted, C.W.: Completely Withdrawn

2.1.1.2 Experimental Conditions

Four BF3 proportional neutron counters (LND-202101, 1” dia., 15.47” len.) were
used for the present experiment. These BF3 counters on locations (Q, 12), (P, 8),
(L, 7), and (E, 8) are referred to as B1, B2, B3, and B4, respectively. The axial
center of effective length of these counters was located at the axial center position



16 K. Hashimoto

of active region of the fuel assembly. The present nuclear instrumentation system
consisted of conventional detector bias-supply, pre-amplifier, spectroscopy amplifier,
and discriminator modules. Finally, signal pulses from these BF3 neutron counters
were fed to a time-sequence data acquisition system, which registered the arriving
time of the signal as digital data. The time length of the acquired data for each
subcritical pattern was about 30 min.

The pulsed proton beams were supplied by a fixed-field alternating gradient
(FFAG) accelerator. The proton beam intensity of the accelerator was set to 30 pA for
any subcritical patterns except for pattern A. For only pattern A, we necessarily made
the proton beam intensity fall to 12 pA, to reduce counting loss originated from the
dead-time effect of neutron counter. Throughout the present accelerator operations,
the pulsed repetition frequency and the beam width were set to 30 Hz and 100 ns,
respectively.

2.1.2 Formulae for Data Analyses

2.1.2.1 Feynman-α Formula

Rana and Degweker [6] derived the Feynman-α and the Rossi-α formulae for a
periodically pulsed non-Poisson source, where delayed neutron contribution was
considered and each pulsewas assumed to be a delta function. Since the pulsewidth of
100 ns of our accelerator is much shorter than the time scale of the present correlation
analyses, the assumption is acceptable. First, we consider the zero-power transfer
function G(s) as follows:

1

G(s)
= s

(
Λ +

7∑
i=1

βi

λi + s

)
− ρ, (2.1)

where the six group model of delayed neutrons is supposed. When the poles and the
residues of the above transfer function are represented by si and Ai, respectively, a
parameter Yi of the Feynman-α analysis can be defined as [7].

Yi = 2
ν (ν − 1)

ν̄2

Ai G(αi )

αi
, (2.2)

where

αi = − si . (2.3)

Then, the Feynman-α formula derived by Rana and Degweker [6] can be written
as follows:
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Y (T ) = ν̄2λd

m1

7∑
i=1

Yi

(
1 − 1 − e−αi T

αi T

){
m1λ f +

(
m2 − m2

1

)
(−ρ)

ν(ν − 1)Λ

}

+ ν̄2λdm1(−ρ)

ν(ν − 1)Λ

7∑
i=1

Yi

⎧⎨
⎩e

−αi

(
T− [ f T ]

f

)
+ e− αi

f e
αi

(
T− [ f T ]

f

)
− 1 − e− αi

f

T αi

(
1 − e− αi

f

)
⎫⎬
⎭,

+λdm1Λ

(−ρ)

{
1 + 2[ f T ] − [ f T ]

f T
([ f T ] + 1) − f T

}
(2.4)

where f is pulse repetition frequency and [f T ] represents largest integer less or
equal to f T. The largest α7 is a prompt-neutron decay constant to be determined
and the other αi is a decay constant of each delayed-neutron mode. Other notations
are conventional except for m1 and m2, which are first and second factorial moment
of source multiplicity distribution and are defined by the following equations [8],
respectively:

m1 = N̄ νsp, (2.5)

m2 = N (N − 1) νsp
2 + N̄ νsp

(
νsp − 1

)
, (2.6)

where N and νsp are number of protons in a pulsed bunch and number of neutrons
produced by each spallation event, respectively. These definitions lead to the
following expression:

m2 − m2
1 =

(
N 2 − N̄ − N̄ 2

)
νsp

2 + N̄ νsp
(
νsp − 1

)
. (2.7)

The above quantity gives an expression for non-Poisson character of a neutron
source and is included in the first term of Eq. (2.4). When the proton number N
follows the Poisson distribution, the first term of Eq. (2.7) disappears. The second
term is expected to increase with an increase in proton energy but the present energy
100 MeV may lead to a small positive value.

Equation (2.4) is not available for least-squares fitting to the Y data because of a
complexity of the delayed neutron terms and many unknown parameters included in
the terms. Here, we reduce the rigorous equation to obtain a practical fitting formula.
First, the gate-time T of the Feynman-α analysis is restricted within the following
range:

T � 1

αi
i = 1, 2, . . . , 6. (2.8)

In the above range, the following Maclaurin expansions can be done:

e− αi T � 1 − αi T + (−αi T )2

2
, (2.9)
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e
± αi

(
T − [ f T ]

f

)
� 1 ± αi

(
T − [ f T ]

f

)
+ 1

2
α2
i

(
T − [ f T ]

f

)2

, (2.10)

e− αi
f � 1 − αi

f
. (2.11)

We substitute Eqs. (2.9), (2.10), and (2.11) into Eq. (2.4) to obtain the following
final form:

Y (T ) =C1

(
1 − 1 − e−α T

αT

)

+C2

⎧⎨
⎩e

− α
(
T − [ f T ]

f

)
+ e− α

f e
α

(
T − [ f T ]

f

)
− 1 − e− α

f /

T αp

(
1 − e− α

f

)
⎫⎬
⎭,

+C3

{
1 + 2 [ f T ] − [ f T ]

f T
([ f T ] + 1) − f T

}
+ C4T (2.12)

where

C1 = ν̄2 λd Y7

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1) Λ

}
, (2.13)

C2 = ν̄2 λd m1 (−ρ)

ν (ν − 1)Λ
Y7, (2.14)

C3 = λd m1 Λ

(−ρ)
− ν̄2 λd m1 (−ρ)

ν (ν − 1)Λ

6∑
i = 1

Yi , (2.15)

C4 = ν̄2 λd

6∑
i = 1

Yi αi

2

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1)Λ

}
, (2.16)

α = α7. (2.17)

In this Feynman-α analysis, Eq. (2.12) is fitted to the Y data to obtain the prompt-
neutron decay constant α and the four coefficients (C1, C2, C3, C4).

2.1.2.2 Rossi-α Formula

In the same manner as a derivation of the practical Feynman-α formula, the Rossi-α
formula proposed by Rana and Degweker [6] can be reduced. Their formula can be
written as follows:
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p (τ ) =λd ν̄2

2

7∑
i = 1

αi Yi e
− αi τ

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1)Λ

}

+λd m1 ν̄2 (−ρ)

2 ν (ν − 1) Λ

7∑
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αi Yi
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⎩e

− αi

(
τ − [ f τ ]

f

)
+ e− αi

f e
αi

(
τ − [ f τ ]

f

)
(
1 − e− αi

f

)
⎫⎬
⎭. (2.18)

The conditional counting probability p(τ )�τ is a probability that, given a neutron
count at a time, there is a subsequent count in �τ around time τ later. First, the time
interval τ of the Rossi-α analysis is restricted within the following range:

τ � 1

αi
i = 1, 2, . . . , 6. (2.19)

Under the above time-interval range, the following Maclaurin expansions can be
done:

e−αi τ � 1 − αi τ, (2.20)

e
± αi

(
τ − [ f τ ]

f

)
� 1 ± αi

(
τ − [ f τ ]

f

)
+ 1

2
α2
i

(
τ − [ f τ ]

f

)2

. (2.21)

We substitute the above equations into Eq. (2.18) to obtain the final form:

p(τ )�τ = C5 e
− α τ + C6

⎧⎨
⎩e

− α
(
τ − [ f τ ]

f

)
+ e

α
(
τ − [ f τ ]+ 1

f

)
(
1 − e− α

f

)
⎫⎬
⎭ + C7 − C8 τ,

(2.22)

where

C5 = λd ν̄2

2
α7 Y7

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1) Λ

}
�τ, (2.23)

C6 = λd m1 ν̄2 (−ρ)

2 ν (ν − 1) Λ
α7 Y7 �τ, (2.24)

C7 =λd ν̄2

2

6∑
i = 1

αi Yi

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1) Λ

}
�τ

+ f λd m1 ν̄2 (−ρ)

ν (ν − 1)Λ

6∑
i = 1

Yi �τ, (2.25)
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C8 = λd ν̄2

2

6∑
i = 1

α2
i Yi

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1)Λ

}
�τ, (2.26)

α = α7. (2.27)

In this Rossi-α analysis, Eq. (2.22) is fitted to the p(τ )�τ data to obtain the
prompt-neutron decay constant α and the four coefficients (C5, C6, C7, C8).

2.1.3 Results and Discussion

2.1.3.1 Feynman-α Analyses

Time-sequence counts data within a time interval (gate time) of 1 ms were generated
from the arriving time data registered, and then the count data within longer gate
times were synthesized by the moving-bunching technique [9] to calculate a gate-
time dependence of the Y defined as variance-to-mean ratio minus 1 of the count’s
data. Figure 2.3 shows a gate-timeT and a subcriticality dependence of theY obtained
by the Feynman-α analysis, where neutron counter is B1. The gate-time dependence
of the Y is oscillatory due to the periodicity of the pulsed source. The Y of the slightly
subcritical pattern B tends to increase with a lengthening in gate time, while that of
the deeply subcritical patterns C, D, and E scarcely have the increasing trend and
the difference of the amplitude among these patterns is small. At pattern F, whose Y
is not drawn in Fig. 2.3, the Y scarcely has the increasing trend and the amplitude
is slightly smaller than that at pattern E. The least-squares fits of Eq. (2.12) to the
Y data are included in Fig. 2.3, where the fitted curves are in very good agreement
with the Y data. The result obtained from counter B2 and B3 was similar to the
above observation obtained from counter B1 but that from counter B4 was entirely
different.

Fig. 2.3 Subcriticality
dependence of Y value of
counter B1 (Ref. [1])
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Fig. 2.4 Subcriticality
dependence of Y value of
counter B4 (Ref. [1])

Figure 2.4 shows a gate-time T and a subcriticality dependence of the Y obtained
by the Feynman-α analysis, where neutron counter is B4. In a shorter gate-time
range than about 0.03 s, a slight difference in the Y among subcritical patterns can
be observed. In the longer range, however, the Y data of respective patterns are
overlapped. This feature suggests that counter B4 hardly detects fission neutrons
which have an information of the subcriticality and most of the neutron counts must
be generated from the detection of source neutrons arriving from the target.

In Fig. 2.5, the prompt-neutron decay constant αp obtained from the present
Feynman-α analysis under the pulsed spallation source is compared with the average
decay constant done from the previous analysis under a stationary source inherent
in nuclear fuels [2], where the previous three decay constants from three neutron
counters (B1, B2, B3) are averaged to obtain the average and the standard deviation.

Fig. 2.5 Comparison of
respective prompt neutron
decay constants obtained
from Feynman-α analyses
under pulsed spallation and
stationary inherent source
(Ref. [1])
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The error of the present decay constant represents statistical uncertainty±1σ derived
from a nonlinear least-squares method. Since counter B4 was placed far from the
core and consequently had very small detection efficiency, the previous analysis for
the counter was unsuccessful.

The present decay constants of counters B1, B2, and B3 agree well with the
previous average decay constant, while the decay constant of counter B4 is much
larger than the previous one. As mentioned in Fig. 2.4, the counter B4 placed far
from the fuel region and closely to the target must scarcely detect fission neutrons
and consequently have little information about fission chain. Most of neutron counts
of the counters B1, B2, and B3 located closely to the fuel region are expected to be
generated from the detection of fission neutrons.

2.1.3.2 Rossi-α Analyses

Figure 2.6 shows a time-interval τ and subcritical-pattern dependences of the condi-
tional counting probability p(τ )�τ obtained by the Rossi-α analysis, where neutron
counter is B1. The least-squares fits of Eq. (2.22) to the counting probability data
are included in this figure, where the fitted curves seem to be in good agreement
with the data but the fittings are unsuccessful. Figure 2.7 shows an enlarged view
near the second peak in Fig. 2.6. A considerable difference between the counting
probability data and Eq. (2.22) fitted to the data can be observed. The probability
data have a smooth convex top at every integral multiple of pulse period, while the
fitted curve of Eq. (2.22) has a sharp cusp arising from a delta-function-like shape
of pulsed neutron. Since the pulse width of 100 ns of our accelerator is much shorter
than the time scale of the present correlation analyses, the assumption that each pulse
has a delta-function-like shape is acceptable. Here, we consider the reason why the
Rossi-α data had the smooth convex top.

In the previous pulsed-neutron-source experiments [10–12], a considerable delay
in counter response to neutron generation has been observed. The delay has been
considered to originate primarily from a slowing down and a thermalization time of

Fig. 2.6 Subcriticality
dependence of P(τ )�τ of
counter B1 (Ref. [1])
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Fig. 2.7 Enlarged view near
a peak in Fig. 2.6 (Ref. [1])

high-energy source neutrons for moderation to thermal energy and from a diffusion
time of the thermalized source neutrons for arrival at core. The delay could be also
interpreted as a higher harmonics effect [13, 14].

In the previous pulsed-neutron-source experiments mentioned above, the decay
data deviated from a single exponential curve were masked to determine the funda-
mental prompt-neutron decay constant from a least-squares fitting of a conventional
formula based on the one-point kinetics model. We tried to apply this masking tech-
nique to the present Rossi-α analysis. As shown in Fig. 2.8, the data around each
smooth convex top were masked for a least-squares fitting of the present Rossi-α
formula. The cusps of these fitted curves appear sharper than those of Fig. 2.7. The
correlation coefficient is an indication of a goodness of the least-squares fitting. In
this study, we employed the mask width with the maximum coefficient. The optimal
mask width for every counter and every subcritical pattern was determined.

In Fig. 2.9, the prompt-neutron decay constant α obtained from the present Rossi-
α analysis under the pulsed spallation source is compared with the average decay
constant done from the previous analysis under a stationary source inherent in nuclear
fuels [2], where the masking technique is not applied to the present analysis. The

Fig. 2.8 Masking data
around peaks for
least-squares fitting (Ref. [1])
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Fig. 2.9 Comparison of
respective prompt-neutron
decay constants obtained
from Rossi-α analyses under
pulsed spallation and
inherent source (Ref. [1])

present decay constant is in poor agreement with the previous one. This disagree-
ment could be resolved by applying the masking technique, as shown in Fig. 2.10.
Except for counter B4, the decay constant obtained from the present analysis with the
masking technique is in good agreement with that done from the previous analysis.
The counter B4 placed far from the fuel region and closely to the neutron source
derives a large decay constant of source neutrons in reflector. As shown in Fig. 2.5,
the decay constant obtained from the present Feynman-α analysis, except for counter

Fig. 2.10 Effect of masking
data around peaks on
prompt-neutron decay
constant obtained from
Rossi-α analysis under
pulsed spallation source
(Ref. [1])
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B4, well agreed with the previous decay constant. We can have this fortunate agree-
ment because the respective negative and positive sharp cusps of the uncorrelated
second and third terms of Eq. (2.12) barely cancel out, as shown in Fig. 2.5. In
contrast, the present Rossi-α formula has no cancelation mechanism and has sharp
cups at every integral multiple of pulse period.

2.1.3.3 Comparison of Correlation Amplitude Between Spallation
and Poisson Sources

Many authors [6, 8, 15–18] theoretically showed that the non-Poisson spallation
source enhanced the correlation amplitudes of various reactor noise analyses. Here,
we compare the correlation amplitudes obtained from the Feynman-α and Rossi-
α analyses under the present non-Poisson spallation source with those under the
previous Poisson inherent source [2]. First, the respective prompt correlation ampli-
tudes C1 and C5 of the present Feynman-α and Rossi-α formulae are rewritten in the
familiar forms. The prompt quantity Y 7 included in the correlation amplitudes can
be described as follows [6]:

Y7 = ν (ν − 1)

ν̄2 α2
. (2.28)

When the above equation is substituted for Eqs. (2.13) and (2.23), the following
equations can be, respectively, obtained:

C1 = λd
ν (ν − 1)

α2

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1)Λ

}
, (2.29)

and

C5 = λd ν (ν − 1)

2α

{
λ f +

(
m2 − m2

1

)
(−ρ)

m1 ν (ν − 1)Λ

}
�τ. (2.30)

The respective correlation amplitudes C1P and C5P of the conventional Feynman-
α and Rossi-α formulae for a stationary Poisson source can be described as follows
[7]:

C1P = λd λ f
ν (ν − 1)

α2
, (2.31)

and

C5P = λd λ f ν (ν − 1)

2 α XP
�τ, (2.32)
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where

λd = ε λ f . (2.33)

Assuming that a detection efficiency ε has no difference between the non-Poisson
spallation and the Poisson sources, the following relationships hold:

C1 = C1P + λd
(
m2 − m2

1

)
(−ρ)

m1 α2 Λ
, (2.34)

and

C5 = C5P + λd
(
m2 − m2

1

)
(−ρ)

2m1 α Λ
�τ. (2.35)

The respective second terms of the right-hand sides of the above two equations
express the enhancement by the non-Poisson character of the spallation source.
The enhancement disappears at a critical state and increases with an increase in
subcriticality.

Next, the subcriticality dependence of the enhancement is experimentally
confirmed. Figure 2.11 shows a comparison of respective prompt correlation ampli-
tudes obtained from the Feynman-α analyses under the present pulsed spallation and
the stationary inherent sources. The latter is a stationary Poisson source since the
inherent source neutrons are dominantly produced by (α, n) reaction and sponta-
neous fissions negligibly contribute to the source strength [2]. This figure indicates

Fig. 2.11 Comparison of
respective prompt-neutron
correlation amplitudes
obtained from Feynman-α
analyses under pulsed
spallation and stationary
inherent sources (Ref. [1])
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Fig. 2.12 Comparison of
respective prompt-neutron
correlation amplitudes
obtained from Rossi-α
analyses under pulsed
spallation and stationary
inherent sources (Ref. [1])

that the enhancement of the prompt correlation amplitude increases with an increase
in subcriticality. The non-Poisson character of the spallation source enhances the
amplitude clearly.

Figure 2.12 also shows another comparison of respective prompt correlation
amplitudes obtained from the Rossi-α analyses under the present pulsed spallation
and the stationary inherent sources. This also indicates that the non-Poisson character
of the spallation source significantly enhances the amplitude. The above discussion
is confined to the qualitative observation and some quantitative evaluation of the
non-Poisson character must be difficult. This is because a detection efficiency ε has
a considerable difference between the external spallation and the inherent sources
and the efficiency must depend on the subcriticality. A spatially uniform inherent
source in fuels hardly excites any higher modes, however, another spatially localized
external source significantly excites a higher mode with an increase in subcriticality,
as could be observed in a sourcemultiplicationmeasurement [2]. In next Sect. 2.1.3.4,
we try to derive a quantitative indicator of the non-Poisson character.

2.1.3.4 Indicator of Non-poisson Character of Spallation Source

Dividing Eq. (2.23) by Eq. (2.24) of the present Rossi-α formula, the following
equation can be obtained:

C5

C6
= λ f ν (ν − 1)Λ

m1 (−ρ)
+ m2 − m2

1

m2
1

. (2.36)
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The above equation has no detection efficiency and asymptotically approaches
the second term with an increase in the subcriticality. The second term quantitatively
expresses a non-Poisson character of the spallation source and may be referred to
as “the Degweker’s factor” of multiplicity distribution of neutrons in a pulse bunch.
When the multiplicity follows the Poisson distribution, the factor becomes zero.
Degweker et al. theoretically simulated the Rossi-α analysis changing parametrically
the above factor to investigate an impact of non-Poisson source [8].

Generally, the ratio of the second factorial moment to the first factorial moment
squared of a multiplicity distribution has been employed as an indication charac-
terizing the distribution. As an example, Diven factor [19] is defined as the ratio of
the second factorial moment to the first factorial moment squared of a multiplicity
distribution of fission neutrons emitted from a fission event and is a useful indication
characterizing the multiplicity distribution. Adding 1 to the Degweker’s factor, the
result is the ratio of the second factorial moment to the first factorial moment squared
of the multiplicity distribution of neutrons in a pulse bunch. Consequently, this factor
is eligible to employ as the indication characterizing the multiplicity distribution and
should be determined experimentally.

Figure 2.13 shows a subcriticality dependence of the ratioC5/C6 determined from
the present Rossi-α analysis. At the more deeply subcritical system than pattern C,
the ratio seems to be an asymptotic value. Seeing the ratio within the subcritical
range from pattern C to F, no systematic dependence on the subcriticality can be
observed. Averaging the ratios over the subcritical range and over four counters, we
obtain the second term, i.e., the Degweker’s factor of 0.067 ± 0.011. The non-zero
value convinces us that the present spallation source has the non-Poisson character.

Fig. 2.13 Subcriticality
dependence of coefficient
ratio C5/C6 obtained from
Rossi-α analysis (Ref. [1])
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If the accelerator had higher energy proton beam than 100 MeV, the factor would be
larger [20].

2.2 Power Spectral Analyses

2.2.1 Experimental Settings

The power spectral analysis on frequency domain is carried out in the same A-core
as shown in Fig. 2.2 [21]. Figure 2.14 shows the present signal processing circuit,
whose former stage consisted of conventional charge preamplifier (PA), detector
bias-supply (HV), spectroscopy amplifier (SA), and single-channel analyzer (SCA)
modules. A special count-rate meter (Oken S-1955) input logic pulse train from SCA
to output analog signal proportional to instantaneous count rate. The rate meter could
be well modeled by a primary delay element which had the time constant of 3.88 ms
(break frequency 41.0 Hz). The time constant of the meter is so short that a large
portion of reactor noise passes through the filtration. Finally, analog signals from
the two count-rate meters were fed to a fast Fourier transform (FFT) analyzer (Ono
DS-3200) to obtain auto- and cross-power spectral densities and to record the analog
signals as digital data. This FFT analyzer has a highly resolvable analog-to-digital
converter whose number of bits and dynamic range are 24 bits and above 110 dB,
respectively. An analysis range in frequency from 1.25 to 1000 Hz was specified to
obtain 800-point spectral data. Delayed neutrons are expected to contribute hardly
to the power spectral density obtained from the FFT analyzer because the above
minimumfrequencyof 1.25Hz is larger than the 6th decay constant 3.01 s−1 (0.48Hz)
of a delayed neutron data given by Keepin [22].

In each subcritical pattern, time-sequence signal data were acquired for about
10 min. A response function of the above count-rate meter was measured in advance
and the auto-and cross-power spectral densities obtained were divided by the auto-
power spectral density of the response of the count-rate meter, so as to compensate
an influence of the meter. Throughout the present accelerator operations, the pulsed

Core Reactor Room Control Room

BF3
Counter
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BF3
Counter

B2

PA

PA

HV

HV

SA SCA Rate Meter

FFT Analyzer

Pulse
Train

Analog
Signal

Fig. 2.14 Signal processing circuit for power spectral analysis (Ref. [21])
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repetition frequency and the beam width were set to 30 Hz and 100 ns, respectively.
The proton beam intensity of an accelerator was set to 30 pA.

2.2.2 Formula for Power Spectral Analyses

2.2.2.1 Degweker’s Formula

Degweker and Rana [8] formulated the auto- and cross-power spectral densities for
a periodically pulsed non-Poisson source, where delayed neutron contribution was
neglected and each pulse was assumed to be a delta function. The neglect of delayed
neutron contribution is acceptable as mentioned in the above Sect. 2.2.1. Since the
pulse width 100 ns of our accelerator is much shorter than the time scale of the
present analysis, the assumption of the delta function is also acceptable. Here, their
formulae are rewritten as a function of not angular frequency ω s−1 but frequency f
Hz. Then, their cross-power spectral density between neutron detector 1 and 2 can
be described as follows:

Φ12( f ) = C1( f )

(2π f )2 + α2
+ C2( f )

∞∑
n = −∞

δ ( f − n fR)

(2π f )2 + α2
, (2.37)

where

C1( f ) = H( f ) q2 fR λd1 λd2
(
m2 − m2

1 + 2m1 Y1
)
, (2.38)

C2( f ) = H( f ) q2 f 2R λd1 λd2 m
2
1, (2.39)

Y1 = λ f
ν (ν − 1)

2 α
. (2.40)

Their auto-power spectral density of neutron detector 1 can be also described as
follows:

Φ11( f ) = C3( f ) + C4( f )

(2π f )2 + α2
+ C5( f )

∞∑
n = −∞

δ( f − n fR)

(2π f )2 + α2
, (2.41)

where

C3( f ) = H( f ) q2 fR λd1 m1

α
, (2.42)

C4( f ) = H( f ) q2 fR λ2
d1

(
m2 − m2

1 + 2m1 Y1
)
, (2.43)
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C5( f ) = H( f ) q2 f 2R λ2
d1 m

2
1, (2.44)

where α and f R represent prompt-neutron decay constant and pulse repetition
frequency, respectively. H(f ) is a power spectral density of an impulse response
of detector and processing-circuit system.

2.2.2.2 Formula Applied to Present Analyses

The auto-power spectral density has a white chamber noise indicated by the first
term of Eq. (2.41). The correlated component done by the second term is completely
hidden by the chamber noise in a higher frequency range, and this feature suggests a
difficulty in estimating the break frequency, i.e., the prompt-neutron decay constant
[12, 23]. In previous reactor noise analysis for a stationary source, Nomura [24]
proposed the use of two neutron detectors with independent electronic circuits to
reduce this spurious white noise and demonstrated the usefulness of his proposal.
His original improvement referred to as the two-detector method is identical with the
cross-power spectral analysis familiar to signal processing field. Actually, Eq. (2.37)
for the cross-power spectral density has no term of the white noise. In the present
study, we analyze only the cross-power spectral density free from the white noise.

The two coefficients defined by Eqs. (2.38) and (2.39) includeH(f ) and depend on
frequency f . When the frequency response of the count-rate meter is compensated as
mentioned in Sect. 2.2.1, these coefficients are independent of the frequency. For the
following expressions, each coefficient is described as a constant. Then, Eq. (2.37)
can be rewritten as

Φ12( f ) = C1

(2π f )2 + α2
+ C2

∞∑
n =−∞

δ( f − n fR)

(2π f )2 + α2
. (2.45)

The second term of the above equation gives an expression to the uncorrelated
delta-function peaks at the multiple of pulse repetition frequency f R. At frequency
of the integral multiple, Eq. (2.45) can be reduced as follows:

Φ12(n fR) = C1

(2π n fR)2 + α2
+ C2

(2π n fR)2 + α2
, n = 1, 2, 3 . . . . (2.46)

The second uncorrelated term of the above equation is larger than the first corre-
lated termbyover twoorders ofmagnitude [12, 23]. Then,Eq. (2.46) canbe simplified
as

Φ12(n fR) � C1

(2π n fR)2 + α2
, n = 1, 2, 3 . . . . (2.47)
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From a least-squares fit of Eq. (2.47) to peak data at frequency of the integral
multiple of f R, the prompt-neutron decay constant α and coefficient C2 can be
determined.

Next, a well-known effect of a higher mode excited by the injection of pulsed
neutrons [10–12] should be considered. Sakon et al. employed the following equation
to consider the effect successfully [12, 23].

Φ12(n fR) � C2

(2π n fR)2 + α2
+ C2H

(2π n fR)2 + α2
H

, n = 1, 2, 3, . . . . (2.48)

When certain a higher prompt mode as well as a fundamental prompt mode are
excited, such a higher term as the second term of the above equation can be added
to the fundamental term of the power spectral density [25–27]. The prompt-neutron
decay constant of the higher mode is represented by αH . The coefficientC2H includes
the eigenfunction and the adjoint eigenfunction of the higher prompt mode. We try
to apply Eq. (2.48) as well as Eq. (2.47) to derive the fundamental decay constant α
from the uncorrelated peaks.

When the uncorrelated peaks of the cross-power spectral density are masked,
Eq. (2.45) can be reduced to the following equation for the remaining data unmasked:

Φ12( f ) = C1

(2π f )2 + α2
. (2.49)

From a least-squares fit of Eq. (2.49) to the unmasked data, the prompt neutron
decay constant α and coefficient C1 can be also determined. The above equation
gives an expression to the correlated noise component and is identical to the familiar
formula for a stationary neutron source.

2.2.3 Results and Discussion

2.2.3.1 Power Spectral Density

Figure 2.15a, b showmeasured auto-power spectral density of counter B1 and cross-
power spectral density between neutron detector B1 and B2, respectively, where
subcritical pattern is F. The auto-power spectral density is composed of a continuous
correlated component, another constant chamber noise and many delta-function-like
peaks at the integral multiple of the repetition frequency, as expected by Eq. (2.41).
The correlated component tends to be hidden by the white chamber noise with an
increase in frequency and this feature suggests a difficulty in estimating the break
frequency, i.e., the prompt-neutron decay constant.

On the other hand, the cross-power spectral density has no white chamber noise,
expected by Eq. (2.37). The correlated component is larger than one decade (20 dB).
This feature is significantly different from that of the auto-power spectral density as
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(a) Auto-power spectral density of counter B1

(b) Cross-power spectral density between counters B1 and B2

Fig. 2.15 Power spectral density measured at subcritical pattern F (Ref. [21])

shown above. Obviously, the cross-power spectral density is favorable to estimating
the decay constant.

For almost the same subcritical system driven a pulsed 14 MeV Poisson source,
previously, a power spectral analysis was carried out [12]. Figure 2.16a, b show
the cross-power spectral densities measured previously, where the respective pulse
repetition frequencies are 20 and 500 Hz and the subcriticality 13.59 %�k/k is
almost same as that of the present pattern F. In these cross-power spectral densities,
no correlated noise component could be observed, and we failed in determining
the prompt-neutron decay constant from correlated component. Naturally, the auto-
power spectral density also had no correlated component. In contrast to the previous
analysis, the present analysis gives a considerable correlated component as shown
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Fig. 2.16 Cross-power
spectral density measured
previously at a subcritical
KUCA system driven by a
pulsed DT neutron source
(Ref. [21])

(a) Pulse repetition frequency 20 Hz

(b) Pulse repetition frequency 500 Hz

in Fig. 2.15. The non-Poisson character of the spallation source must enhance the
amplitude of the correlated component over a precision limit of the FFT analyzer.

2.2.3.2 Prompt Neutron Decay Constant

Figure 2.17 shows a least-squares fit of Eq. (2.49) to the correlated noise component
of the cross-power spectral density measured at pattern F. In this fitting, 33 delta-
function-like peaks were masked. No systematical deviation of the fitted curve from
the data can be seen. Figure 2.18 shows a least-squares fit of Eqs. (2.47) and (2.48)
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Fig. 2.17 Least-squares fit
to correlated component of
cross-power spectral density
(Ref. [21])

Fig. 2.18 Least-squares fit
to uncorrelated peaks of
cross-power spectral density
(Ref. [21])

to the peak points of the cross-power spectral density at pattern F. No systematical
deviation of fitted Eq. (2.47) from the peak point can be seen in a lower frequency
range than roughly 500 Hz, while above this frequency, a systematical deviation
of the fitted curve from the peak points is significant. In contrast to Eq. (2.47), no
deviation of fitted Eq. (2.48) from the peaks can be observed over the frequency
range. At all subcritical patterns, the fittings of Eq. (2.48) were very successful.

In Fig. 2.19, the prompt-neutron decay constant obtained from the present cross-
power spectral analysis is compared with the average decay constant done from the
previous Rossi-α analysis under the same spallation source [1]. When Eq. (2.47) is
fitted to uncorrelated peaks, the present decay constant is in poor agreement with the
previous one. Fortunately, the fitting of Eq. (2.48) completely resolves this disagree-
ment. When Eq. (2.49) is fitted to continuous correlated data, the agreement with
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Fig. 2.19 Comparison of
respective prompt neutron
decay constants obtained
from present cross-power
spectral and previous
Rossi-α analyses (Ref. [21])

the previous decay constant is not too bad. The analysis for a much longer time than
10 min may be required to enhance the agreement.

2.2.3.3 Indicator of Non-poisson Character of Spallation Source

Dividing Eq. (2.38) by Eq. (2.39) of the formula for cross-power spectral density,
the following equation can be obtained:

fR
C1

C2
= λ f ν (ν − 1)

m1 α
+ m2 − m2

1

m2
1

. (2.50)

The above equation has no detection efficiency and asymptotically approaches to
the second term with an increase in the subcriticality, i.e., the prompt-neutron decay
constant α. The second term quantitatively expresses a non-Poisson character of the
spallation source and may be referred to as “the Degweker’s factor” of multiplicity
distribution of neutrons in a pulse bunch. When the multiplicity follows the Poisson
distribution, the factor becomes zero. Degweker et al. theoretically simulated the
Rossi-α analysis changing parametrically the above factor to investigate an impact
of non-Poisson source [8]. TheDegweker’s factor is a useful indication characterizing
the multiplicity distribution of the spallation neutrons in a pulsed bunch.

Figure 2.20 shows a subcriticality dependence of the ratio f R C1/C2 determined
from the present cross-power spectral analysis. At themore deeply subcritical system
than pattern C, the ratio seems to be an asymptotic value. Seeing the ratio within the
subcritical range from pattern C to F, no systematic dependence on the subcriticality
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Fig. 2.20 Subcriticality
dependence of f R C1/C2
(Ref. [21])

can be observed and these ratios are considered to be the asymptotic value, i.e., the
Degweker’s factor. Averaging the ratios over the subcritical range from Pattern C
to F, we obtained the second term, i.e., the Degweker’s factor of 0.082 ± 0.021.
This value is consistent with 0.067 ± 0.011 determined from the previous Rossi-α
analysis [1].

2.3 Beam Trip and Restart Methods

2.3.1 Experimental Settings

2.3.1.1 Core Configurations

A series of accelerator-beam trip and restart experiments is carried out to determine
the subcriticality of a reactor system driven by a pulsed 14 MeV neutron source
[28]. This core configuration is shown in Fig. 2.21. The core was composed of 20
regular fuel assemblies and one partial fuel assembly, which were loaded on the grid
plate. The fuel and moderator elements of each assembly were set in a 1.5-mm-thick
aluminum sheath and the cross section of the elements within the assembly was the
square of 2”. The regular fuel assembly was composed of 36 unit cells of one (1/16”
thick) uranium plate with Al clad and two (1/8” and 1/4” thick) polyethylene plates,
while the partial fuel assembly was composed of 12 unit cells of these plates. The
partial fuel assembly was employed to adjust the excessive reactivity of the core.



38 K. Hashimoto

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

F

12

E

G

H

I F F F F F

J F F F F F

K F F F F F

L F F F F F

M 12

O

P

Q

R

T

U

W

BF3 counter

Uncompendated ionization chamber

Fission chamber

Partial fuel (3/8"P12EU)

Aluminum sheath

Neutron source

Tritium target

Deuteron beam line

Fuel (3/8"P36EU)

Polyethylene reflector

Control rod

Safety rod

FC#1

N

UIC#4FC#3

FC#2

UIC#5

FC

C3 S5

S4 C1

C2 S6

C

S

N

UIC

FC

UIC#6

B1

B2

B3

B4

B

Fig. 2.21 Top view of core configuration and neutron detector location (Ref. [28])

The active height of the core was about 40 cm, with additional about 60 cm upper
and lower polyethylene reflectors. The configuration of these fuel assemblies was
reported in detail by Pyeon et al. [29].

A pulsed neutron generatorwas combinedwith the core,where 14MeVpulsedDT
neutrons were injected into the subcritical system through the polyethylene reflector.
The generator consisted of a duoplasmatron-type ion source, a Cockcroft-Walton-
type accelerator for deuteron (D+) beam, and tritium (T) target of gas-in-metal type.
The pulsed neutrons are generated through the D-T reaction by the pulsed and accel-
erated D+ beam and T in the target metal. The target was placed outside the polyethy-
lene reflector, as shown in Fig. 2.21. The pulse duration and repetition period of the
D+ beam pulse can be remotely controlled by using an arc-pulser installed in the
control room of KUCA. The current and acceleration voltage of the D+ beam pulse
can also be controlled from the control room. In the present experiment, the major
parameters of the accelerator drive were set to 160 keV in beam energy, 0.6–0.8 mA
in beam current, 0.8 ms in pulse width, 1 ms in pulse repetition period, and 5.1–9.2 V
in arc voltage of the ion source.

2.3.1.2 Experimental Procedures and Conditions

Four BF3 proportional counters (1” dia.) were employed as experimental channels.
As shown in Fig. 2.21, these BF3 counters were placed on several positions around
the core to measure the reactor response to beam trip and restart operations and to
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Table 2.2 Control rod patterns employed in the present experiment (Ref. [28])

Pattern Rod position Reactivity

C1 C2, C3 S4, S5, S6 [%�k/k]

A L.L. U.L. U.L. −0.240

B L.L. L.L. U.L. −0.636

C L.L. L.L. L.L. −1.577

L.L.: Lower Limit [0 mm], U.L.: Upper Limit [1200 mm]

investigate the spatial dependence. The nuclear instrumentation system consisted
of a detector bias supply, a preamplifier, a spectroscopy amplifier, and discriminator
modules. Finally, signal pulses from four neutron counters were fed to amultichannel
scaler to acquire time-sequence count data. The gate width of the scaler was set to
0.1 s. At a slightly subcritical state, the count rate of each neutron counter was
expected to be so high that count losses would be induced by the dead-time effect
of the neutron counter. Hence, the acquired count data were corrected for the losses
on the basis of the non-paralysable model, where we used the dead time of 4 μs
predetermined by an improved Feynman-α analysis [30].

First, anAm–Be neutron source for reactor startupwas inserted. Then, the subcrit-
icality for the experiment was adjusted by changing the axial positions of safety rods
and control ones. The neutron source was taken out of the core and the injection
of pulsed neutrons began. The control rod patterns employed in the experiment are
shown in Table 2.2. The reference reactivity, included in this table, was evaluated
from the reactivity worth of each rod, whoseworth was predetermined by the positive
period method and the rod drop one.

In a beam trip experiment, a certain arc voltage of the ion source was suddenly
dropped to turn off the D+ pulse beam. In the succeeding beam restart experiment,
the voltage was rapidly returned to the original value to turn on the beam.

2.3.2 Data Analyses Method

2.3.2.1 Least-Squares Inverse Kinetics Method

First, the theory of the least-squares inverse kinetics method (LSIKM) [31–33] is
briefly described. Assuming the zero-power and one-point kinetics model, the time-
dependent neutron behavior of a subcritical reactor system driven by an external
neutron source can be described as

dN (t)

dt
= ρ − β

Λ
N (t) +

6∑
k = 1

λk Ck(t) + S, (2.51)
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dCk(t)

dt
= βk

Λ
N (t) − λk Ck(t), (2.52)

where N(t) is the neutron density, Ck(t) the concentration of k-th-group precursor,
and S the neutron source strength. Other notations are conventional. As the above
neutron density, usually, time-sequence count-rate data can be employed to determine
the reactivity ρ. The differential term of Eq. (2.51) is usually neglected to simplify
the analysis. The assumption is applicable to the KUCA system. Consequently, the
discrete form of Eq. (2.51) on time domain is described as

N (t j ) = Λ

β − ρ
Q (t j ) + Λ S

β − ρ
, (2.53)

Q (t j ) =
6∑

k = 1

λk Ck(t j ), (2.54)

where tj is the jth discrete time.As the time-dependent neutron densityN(tj), the time-
sequence count data were employed. The time-dependent precursor density Ck(tj)
of delayed neutrons can be obtained by solving numerically Eq. (2.52). In this study,
the implicit time-integration method was employed to obtain the precursor density.
When the time-sequence data N(tj) and Q(tj) are plotted on the x-y coordinate, two
unknown constants, i.e., the reactivity and the source strength, can be determined
from the least-squares fitting of Eq. (2.53) to these data. By applying the LSIKM to
beam trip data, Eq. (2.53) is reduced to

N (t j ) = Λ

β − ρ
Q (t j ), (2.55)

where the source strength is set to zero.
The delayed neutron data and prompt-neutron generation time of the present

reactor system were generated using the SRAC code system [34], where a three-
dimensional, 19-energy-group diffusion calculation was done with JENDL-3.2
nuclear library [35].

2.3.2.2 Integral Count Technique

The integral count technique has been frequently employed to determine the subcrit-
icality from a source jerk experiment and a rod drop one [31, 36]. When a neutron
source is rapidly taken out of a subcritical reactor core or a control rod is dropped
into a critical core at t = 0, the reactivity of the core can be expressed as

ρ = −
6∑

k = 1

βk

λk

N (0)

∫∞
0 N (t) dt

. (2.56)
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The above expression is a familiar formula for the integral count technique.
The technique is also applied to the present beam trip experiment. Prior to beam

trip operation, the average count rate used as N(0) is measured using a conventional
counting scaler. Then, the integral counts after the operation, which can be used as
an integral appearing in the denominator of Eq. (2.56), are also measured using the
scaler.

2.3.3 Results and Discussion

2.3.3.1 Time-Sequence Data

Figure 2.22 shows the time-sequence N(t) and Q(t) data obtained from counter
B4 in a beam trip experiment, where the control rod pattern is A and the beam is
turned off at zero time. The time-sequence N(t) data in this figure are indicated as
instantaneous count rate at every 0.1 s. After the beam trip, N(t) and Q(t) promptly
decrease and then asymptotically tend to zero. The statistical fluctuation of Q(t)
defined using Eq. (2.54) is slight, compared with that of N(t). This is because the
delayed-neutron emission rate Q(t) is an integral quantity of N(t) over a passing
time. The least-squares approximation fits a model function with minimum error on
the y-axis assuming no error on the x-axis. Therefore, the time-sequence Q(t) and
N(t) data should be assigned to x- and y-axis variables, respectively, for successful
least-squares fitting on the x-y coordinate.

Figure 2.23 shows the time-sequence N(t) and Q(t) data obtained from counter
B4 in a beam restart experiment, where the control rod pattern is A and the beam is
turned on at zero time. After the beam restart, N(t) and Q(t) promptly increase and
then asymptotically tend to their individual constants.

2.3.3.2 Least-Squares Fitting

In Fig. 2.24, the above Q(t) and N(t) data are plotted on the x-y coordinate, where
the fitted lines are drawn by a straight line. Equations (2.55) and (2.53) were fitted to
the data sets of Fig. 2.24a, b, respectively. The fitting is successful and the subcritical
reactivity can be determined from the slope of the fitted line.

Table 2.3 summarizes the reactivities obtained from the beam trip and restart
experiments. As the errors of these results of the LSIKM, the statistical uncertain-
ties that originated from the least-squares fit were employed, while the uncertainty
of delayed-neutron yield β was not taken into account. The errors of the integral
count technique were estimated from counting statistics. For comparison, the results
obtained by a pulsed neutron experiment [11] are also shown in Table 2.4, where the
subcriticality obtained by a conventional analysis technique has a significant counter-
position dependence. This dependence is originated from a higher mode excited by
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Fig. 2.22 Time-sequence
data N(t) and Q(t) in a beam
trip experiment (Ref. [28])

(a) N(t) 

(b) Q(t) 

a pulsed neutron source. The mask analysis technique was employed to reduce the
dependence.

It is obvious fromTable 2.3 that counter B1 significantly overestimates the subcrit-
icality. This feature is originated from a large amount of source neutrons traveling
from the DT target. This is because the counter relatively close to the target counts
muchmore the source neutrons during successive pulse injection, and then the source
neutrons decay out with a larger decay constant after beam trip and more steeply
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Fig. 2.23 Time-sequence
data N(t) and Q(t) in a beam
restart experiment (Ref. [28])

(a) N(t) 

(b) Q(t) 

increase after beam restart. The decay of fission neutrons contains information on
the reactivity, while that of the source neutrons is free from such information. Gener-
ally, the decay constant of the source-neutronmode free from the neutron-production
process is larger than that of the prompt mode of the fission neutron [11]. In Fig. 2.25,
the decay data of counter B1 are compared with those of B4 in a beam trip exper-
iment, where the control rod pattern is C and the data is normalized in such a way
that the average counts before the beam trip become one. This figure shows a larger
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Fig. 2.24 Plot of variables
and fitted line on
x-y coordinate (Ref. [28])

(a) Beam trip experiment

(b) Beam restart experiment

decay of B1 data just after the trip, as noted above. For an actual ADS, a neutron
counter should be placed at a position far from a spallation target. Table 2.3 also
shows that the results of the LSIKM for beam trip data are consistent with those of
the integral count technique except for counter B1.

As seen from Tables 2.3 and 2.4, the present subcriticality obtained using the
counters other than B1 has a slight counter-position dependence compared with
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Table 2.3 Reactivity obtained by beam trip and restart experiments [%�k/k] (Ref. [28])

Rod Neutron Beam trip experiment Beam restart

Pattern Counter LSIKM Integral Experimenta

A B1 −0.283 ± 0.010 −0.288 ± 0.020 −0.340 ± 0.034

B2 −0.244 ± 0.008 −0.232 ± 0.012 −0.242 ± 0.025

B3 −0.244 ± 0.009 −0.233 ± 0.016 −0.241 ± 0.028

B4 −0.241 ± 0.008 −0.232 ± 0.012 −0.239 ± 0.026

B B1 −1.293 ± 0.018 −1.115 ± 0.054 −1.278 ± 0.083

B2 −0.641 ± 0.008 −0.617 ± 0.026 −0.632 ± 0.035

B3 −0.631 ± 0.009 −0.612 ± 0.034 −0.625 ± 0.042

B4 −0.617 ± 0.008 −0.599 ± 0.026 −0.593 ± 0.033

C B1 −5.082 ± 0.094 −4.065 ± 0.256 −2.698 ± 0.423

B2 −1.599 ± 0.025 −1.513 ± 0.092 −1.460 ± 0.165

B3 −1.555 ± 0.033 −1.501 ± 0.120 −1.447 ± 0.201

B4 −1.504 ± 0.027 −1.431 ± 0.084 −1.355 ± 0.171

aLSIKM applied

Table 2.4 Reactivity
obtained by pulsed neutron
experiments [%�k/k] (Ref.
[28])

Rod Neutron Pulsed neutron experiment

Pattern Counter Conventional Mask technique

A B1 −16.05 ± 0.68 −0.236 ± 0.039

B2 −0.299 ± 0.042 −0.223 ± 0.038

B3 −0.153 ± 0.036 −0.227 ± 0.039

B4 −0.043 ± 0.036 −0.245 ± 0.039

B B1 −16.25 ± 0.69 −0.644 ± 0.055

B2 −0.872 ± 0.065 −0.642 ± 0.054

B3 −0.622 ± 0.053 −0.658 ± 0.055

B4 −0.359 ± 0.049 −0.668 ± 0.055

C B1 −18.09 ± 0.73 −1.616 ± 0.092

B2 −2.342 ± 0.126 −1.554 ± 0.089

B3 −1.497 ± 0.087 −1.572 ± 0.090

B4 −0.952 ± 0.075 −1.565 ± 0.089

those obtained in a conventional pulsed neutron experiment and agrees with the result
of the pulsed neutron experiment based on the mask analysis within experimental
errors. Here, we note a further observation from this table, which is a larger error of
the beam restart experiment than that of the beam trip one. From the least-squares
fitting of Eq. (2.55) to beam trip data, only the reactivity is determined. From the
fitting of Eq. (2.53) to beam restart data, however, not only is the reactivity but also
the source strength is simultaneously determined. The additional unknown constant
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Fig. 2.25 Difference in
decay data between counters
B1 and B4 (Ref. [28])

to be inferred is responsible for the larger error of the beam restart experiment.
For the smaller error, the trip experiment is advantageous. Nevertheless, the restart
experiment is useful for the simultaneous determination of both the reactivity and
source strength.

2.4 Conclusion

We derived the Feynman-α and the Rossi-α formulae applicable to the respective
correlation data analyses for a pulsed non-Poisson neutron source. These formulae
were applied to the Feynman-α and the Rossi-α analyses for a subcritical system
driven by a pulsed spallation source in KUCA. The prompt-neutron decay constant
determined from the present Feynman-α analysis well agreed with that done from
a previous analysis for the same subcritical system driven by an inherent neutron
source. However, the decay constant determined from the present Rossi-α analysis
was in poor agreement with that done from the above previous analysis. When the
data around the convex top were masked for least-squares fitting of the present
Rossi- When the data around the convex top of the counting probability distri-
bution were masked for least-squares fitting of the present Rossi-α formula, the
disagreement could be successfully resolved. formula, the disagreement could be
successfully resolved. When the respective prompt-neutron correlation amplitudes
determined from the present Feynman-α and Rossi-α analyses were compared with
those done from the previous analyses under the Poisson inherent source, the non-
Poisson spallation source definitely enhanced the respective correlation amplitudes.
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The Degweker’s factor (m2 − m2
1)/m

2
1 of 0.067 ± 0.011, which is a quantitative indi-

cation of the non-Poisson character, could be determined from the present Rossi-α
analysis.

The power spectral analysis on frequency domain was conducted in the same A-
core as the above Feynman-α andRossi-α analyses. Not only the cross-power but also
the auto-power spectral density had a considerable correlated noise component even
at a deeply subcritical state, where no correlated component could be observed under
a pulsed DT(14 MeV) neutron source. The non-Poisson character of the spallation
source must enhance the correlation amplitude of these power spectral densities. The
Degweker’s factor of 0.082 ± 0.021 could be determined from the present analysis
and was consistent with that obtained by the above Rossi-α analysis.

An experimental technique based on accelerator-beam trip and restart operation
was proposed to determine the subcritical reactivity of ADS. A series of these exper-
iments was performed in a subcritical thermal core of KUCA. The results demon-
strated the applicability of the proposed technique to the thermal ADS of KUCA.
We expect the proposed technique to be applied for an actual ADS in start-up or
shut-down operation.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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