Skip to main content

Basic Elements of Spintronics

  • Chapter
  • First Online:
Spintronics

Abstract

In this chapter, we have discussed some important parameters of Spintronics, such as spin polarization, spin filter effect, spin injection, spin accumulation, spin relaxation, and spin extraction. Passive spintronic devices, such as Spin Valves, have also been discussed in this chapter. In this chapter, we have also presented different kinds of spin relaxation, in both time and space, of conduction electrons in metals and semiconductors. Such spin relaxation mechanism poses limitations to the performance of most of the spintronic devices. In this direction, four primary spin relaxation mechanisms, such as the D’yakonov–Perel, the Elliott–Yafet, the Bir–Aronov–Pikus, and hyperfine interactions with nuclear spins, have been discussed with the ultimate objective to minimize the spin relaxation rate in spintronic devices, so that they become more robust and useful. We have also discussed Field and Heat-Driven Spintronic Effect, i.e., Spin Hall Effect, Seebeck Effect, and Spin Current Measurement Mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • I. Appelbaum, B. Huang, D.J. Monsma, Electronic measurement and control of spin transport in silicon. Nature 447, 295 (2007)

    Article  ADS  Google Scholar 

  • S. Bandyopadhyay, M. Cahay, Introduction to Spintronics (CRC Press Taylor & Francis 2008); Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology 20, 412001 (2009)

    Google Scholar 

  • Y. Bychkov, E.I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  • G. Dresselhaus, Spin orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  • A. Hirohataa, K. Yamadab et al., Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020)

    Article  Google Scholar 

  • F.J. Jedema, A.T. Filip, B.J. van Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001)

    Article  ADS  Google Scholar 

  • F.J. Jedema, H.B. Heersche, A.T. Filip, J.J.A. Baselmans, B.J. van Wees, Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002)

    Article  ADS  Google Scholar 

  • M.W. Wu, J.H. Jiang, M.Q. Weng, Spin dynamics in semiconductors. Phys. Rep. 493, 61 (2010)

    Google Scholar 

  • T. Kampfrath, Probing and controlling spin dynamics with THz pulses. http://magnetism.eu/esm/2018/slides/kampfrath-slides.pdf

  • Y. Ohno et al., Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790 (1999)

    Article  ADS  Google Scholar 

  • S. Pramanik, C.G. Stefanita, S. Bandyopadhyay, Spin transport in self assembled all-metal nanowire spin valves: a study of the pure Elliott–Yafet mechanism. J. Nanosci. Nanotechnol. 6, 1973–1978 (2006)

    Article  Google Scholar 

  • E.I. Rashba, Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267 (2000)

    Article  ADS  Google Scholar 

  • S. Saikin, A drift diffusion model for spin polarized transport in a two-dimensional non-degenerate electron gas controlled by spin-orbit interaction. J. Phys: Condens. Matt. 16, 5–71 (2004)

    Google Scholar 

  • G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, B.J. van Wees, Fundamental obstacle for electrical spin injection from ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790 (2000)

    Article  ADS  Google Scholar 

  • Y. Suzuki, A.A. Tulapurkar, C. Chappert, Spin-injection phenomena and applications. Nanomagnet. Spintron. 978-0-444-53114-8 (2009)

    Google Scholar 

  • H.X. Tang et al., Spin Injection and Transport in Micro- and Nano-scale Devices in Semiconductor Spintronics and Quantum Computation, ed. by D.D. Awschalom, N. Samarth, D. Loss (Springer, Berlin, 2002)

    Google Scholar 

  • T.S. Seifert, Spintronics with Terahertz Radiation: Probing and driving spins at highest frequencies. PhD dissertation, Veritus Iustitia, Freie Universitat Berlin, 2017

    Google Scholar 

  • Z.G. Yu, M.E. Flatt´e, Electric field dependent spin diffusion and spin injection into semiconductors. Phys. Rev. B 66, 201202 (2002)

    Google Scholar 

  • I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Modern Phys. 76, 323–410 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Dey .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, P., Roy, J.N. (2021). Basic Elements of Spintronics. In: Spintronics. Springer, Singapore. https://doi.org/10.1007/978-981-16-0069-2_2

Download citation

Publish with us

Policies and ethics